[1] J L Borges, In praise of darkness, Dutton, New York (1974).


[2] V Beiser, The world in a grain: the story of sand and how it transformed civilization, Riverhead Books, New York (2018).


[3] UEPG, Annual Review of UEPG (the European Aggregates Assoc.), Tech. Rep. (2021).
https://uepg.eu/mediatheque/index/1.html

[4] NASA, Avalanche on North pole scarp on Mars, ESP 025010 2650 (2011).
https://hirise.lpl.arizona.edu/ESP_025010_2650

[5] K Huang, Wet granular dynamics: From single particle bouncing to collective motion, Habilitation Thesis, University of Bayreuth, Germany (2014).
https://sites.duke.edu/dukecdl/files/2022/12/Huang14_habil_s.pdf

[6] E Meron, Nonlinear physics of ecosystems, Boca Raton, FL: CRC Press, Taylor & Francis Group, (2015).
https://doi.org/10.1201/b18360

[7] S Antonyuk, S Heinrich, N Deen, H Kuipers, Influence of liquid layers on energy absorption during particle impact, Particuology 7, 259, (2009).
http://www.sciencedirect.com/science/article/pii/S1674200109000741

[8] T M ̈uller, K Huang, Influence of the liquid film thickness on the coefficient of restitution for wet particles, Phys. Rev. E 93, 042904, (2016).
https://doi.org/10.1103/PhysRevE.93.042904

[9] A Amon, P Born, et al., Preface: Focus on imaging methods in granular physics, Review of Scientific Instruments 88, 051701, (2017).
https://doi.org/10.1063/1.4983052

[10] A Rosato, K Windows-Yule, Chapter 3 - Investigative approaches I: experimental imaging techniques in Segregation in Vibrated Granular Systems, Academic Press, 74, (2020).
https://doi.org/10.1016/B978-0-12-814199-1.00009-3

[11] C R K Windows-Yule, M T Herald, et al., Recent advances in positron emission particle tracking: a comparative review, Reports on Progress in Physics, 85, 016101, (2022).
https://doi.org/10.1088/1361-6633/ac3c4c

[12] B Andreotti, Y Forterre, O Pouliquen, Granular Media: Between Fluid and Solid, Cambridge University Press, (2013).
https://doi.org/10.1017/CBO9781139541008

[13] P A Johnson, X Jia, Nonlinear dynamics, granular media and dynamic earthquake triggering, Nature 437, 04015, (2005).
https://doi.org/10.1038/nature04015

[14] J M Gray, Particle Segregation in Dense Granular Flows, Annual Review of Fluid Mechanics 50, 433, (2018).
https://doi.org/10.1146/annurev-fluid-122316-045201

[15] D J Jerolmack, K E Daniels, Viewing Earth’s surface as a soft-matter landscape, Nature Reviews Physics 1, 730, (2019).
https://doi.org/10.1038/s42254-019-0111-x

[16] J C Ruiz-Su ́arez, Penetration of projectiles into granular targets, Reports on Progress in Physics 76, 066601, (2013).
https://doi.org/10.1088/0034-4885/76/6/066601

[17] K Huang, D Hern ́andez-Delfin, et al., The role of initial speed in projectile impacts into light granular media, Scientific Reports 10, 12, (2020).
https://doi.org/10.1038/s41598-020-59950-z

[18] Y Feng, S Huang, et al., Granular dynamics in auger sampling, Journal of Fluid Mechanics 935, A26, (2022).
https://doi.org/10.1017/jfm.2022.17

[19] H M Jaeger, S R Nagel, R P Behringer, Granular solids, liquids, and gases, Reviews of Modern Physics 68, 1259, (1996).
https://doi.org/10.1103/RevModPhys.68.1259

[20] J Duran, Sands, Powders and Grains (An Introduction to the Physics of Granular Materials), Springer-Verlag, New York (2000).
https://doi.org/10.1007/978-1-4612-0499-2

[21] P K Haff, Grain flow as a fluid-mechanical phenomenon, Journal of Fluid Mechanics 134, 430, (1983).
https://doi.org/10.1017/S0022112083003419

[22] T P ̈oschel, N Brilliantov, Granular gas dynamics, Springer-Verlag Berlin, Heidelberg (2003).
https://doi.org/10.1007/b12449

[23] I Goldhirsch, Rapid granular flows, Annu.Rev. Fluid Mech. 35, 267, (2003).
https://doi.org/10.1146/annurev.fluid.35.101101.161114

[24] P Eshuis, K Weele, D Lohse, D Meer, Experimental Realization of a Rotational Ratchet in a Granular Gas, Phys. Rev. Letters 104, 248001, (2010).
https://doi.org/10.1103/PhysRevLett.104.248001

[25] W D Fullmer, C M Hrenya, The Clustering Instability in Rapid Granular and Gas-Solid Flows, Annual Review of Fluid Mechanics 49, 510, (2017).
https://doi.org/10.1146/annurev-fluid-010816-060028

[26] G D MiDi, On dense granular flows, The European Physical Journal E 14, 25, (2004).
https://doi.org/10.1140/epje/i2003-10153-0

[27] P Jop, Y Forterre, O Pouliquen, A constitutive law for dense granular flows, Nature 441, 730, (2006).
https://doi.org/10.1038/nature04801

[28] P Bak, C Tang, K Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Letters 59, 384, (1987).
https://doi.org/10.1103/PhysRevLett.59.381

[29] P Bak, C Tang, K Wiesenfeld, Self-organized criticality, Phys. Rev. A 38, 374, (1988).
https://doi.org/10.1103/PhysRevA.38.364

[30] K Huang, 1/f noise on the brink of wet granular melting, New Journal of Physics 17, (2015).
https://doi.org/10.1088/1367-2630/17/8/083055

[31] S Edwards, R Oakeshott, Theory of powders, Physica A: Statistical Mechanics and its Applications 157, 1090, (1989).
https://doi.org/10.1016/0378-4371(89)90034-4

[32] A Baule, F Morone, H J Herrmann, H Makse, Edwards statistical mechanics for jammed granular matter, Reviews of Modern Physics 90, 015006, (2018).
https://doi.org/10.1103/RevModPhys.90.015006

[33] D L Henann, K Kamrin, A predictive, size-dependent continuum model for dense granular flows, Proceedings of the National Academy of Sciences 110, 6735, (2013).
https://doi.org/10.1073/pnas.1219153110

[34] K Kamrin, Quantitative Rheological Model for Granular Materials: The Importance of Particle Size, Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-50257-1_148-1

[35] A H Clark, J A Dijksman, Editorial: Non-local Modeling and Diverging Lengthscales in Structured Fluids, Frontiers in Physics 8, 18, (2020).
https://doi.org/10.3389/fphy.2020.00018

[36] M A Aguirre, S Luding, L A Pugnaloni, R Soto, Editorial: Powders & Grains 2021 9th International Conference on Micromechanics of Granular Media, EPJ Web of Conferences 249, 00001, (2021).
https://doi.org/10.1051/epjconf/202124900001

[37] C Hrenya, Computational Granular Dynamics - Models and Algorithms, Thorsten P ̈oschel and Thomas Schwager, Springer, 2005, (book review) Granular Matter 8, 55, (2006).
http://dx.doi.org/10.1007/s10035-006-0226-5

[38] J Zhao, M Jiang, K Soga, S Luding, Micro origins for macro behavior in granular media, Granular Matter 18, 59, (2016).
https://doi.org/10.1007/s10035-016-0662-9

[39] W Ge, L Wang, et al., Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application, Reviews in Chemical Engineering 33, 551, (2017).
https://doi.org/10.1515/revce-2015-0079

[40] P Kieckhefen, S Pietsch, M Dosta, S Heinrich, Possibilities and Limits of Computational Fluid Dynamics-Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends, Annual Review of Chemical and Biomolecular Engineering 11, 422, (2020).
https://doi.org/10.1146/annurev-chembioeng-110519-075414

[41] A P Thompson, H M Aktulga, et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comp. Phys. Comm. 271, 108171, (1995).
https://doi.org/10.1016/j.cpc.2021.108171

[42] C Kloss, C Goniva, A Hager, et al., Models, algorithms and validation for opensource DEM and CFD-DEM, Progress in Computational Fluid Dynamics, An International Journal 12, 140, (2012).
https://doi.org/10.1504/PCFD.2012.047457

[43] T Weinhart, L Orefice, et al., Fast, flexible particle simulations - An introduction to MercuryDPM, Comp. Phys. Comm. 249, 107129, (2020).
https://doi.org/10.1016/j.cpc.2019.107129

[44] T Scheiwiller, K Hutter, and F Hermann, Dynamics of Powder Snow Avalanches, Annales geophysicae. Series B. Terrestrial and planetary physics 5B, 569, (1987).


[45] I S Aranson, A Pikovsky, Advances in Dynamics, Patterns, Cognition : Challenges in Complexity, Cham : Springer International Publishing : Imprint: Springer, (2017).
https://doi.org/10.1007/978-3-319-53673-6

[46] J R Agudo, G Luzi, J Han, et al., Detection of particle motion using image processing with particular emphasis on rolling motion, Review of Scientific Instruments 88, 051805, (2017).
https://doi.org/10.1063/1.4983054

[47] A Amon, A Mikhailovskaya, J Crassous, Spatially resolved measurements of microdeformations in granular materials using diffusing wave spectroscopy, Review of Scientific Instruments 88, 051804, (2017).
https://doi.org/10.1063/1.4983048

[48] P Born, K Holldack, Analysis of granular packing structure by scattering of THz radiation, Review of Scientific Instruments 88, 051802, (2017).
https://doi.org/10.1063/1.4983045

[49] K E Daniels, J E Kollmer, J G Puckett, Photoelastic force measurements in granular materials, Review of Scientific Instruments 88, 051808, (2017).
https://doi.org/10.1063/1.4983049

[50] J A Dijksman, N Brodu, R P Behringer, Refractive index matched scanning and detection of soft particles, Review of Scientific Instruments 88, 051807, (2017).
https://doi.org/10.1063/1.4983047

[51] F Ott, S Herminghaus, K Huang, Radar for tracer particles, Review of Scientific Instruments 88, 051801, (2017).
https://doi.org/10.1063/1.4982942

[52] D J Parker, Positron emission particle tracking and its application to granular media, Review of Scientific Instruments 88, 051803, (2017).
https://doi.org/10.1063/1.4983046

[53] R Stannarius, Magnetic resonance imaging of granular materials, Review of Scientific Instruments 88, 051806, (2017).
https://doi.org/10.1063/1.4983135

[54] S Weis, M Schr ̈oter, Analyzing X-ray tomographies of granular packings, Review of Scientific Instruments 88, 051809, (2017).
https://doi.org/10.1063/1.4983051

[55] E Han, I R Peters, H M Jaeger, High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming, Nature Communications 7, 12243, (2016).
https://doi.org/10.1038/ncomms12243

[56] T A Brzinski, K E Daniels, Sounds of Failure: Passive Acoustic Measurements of Excited Vibrational Modes, Phys. Rev. Letters 120, 218003, (2018).
https://doi.org/10.1103/PhysRevLett.120.218003

[57] D S Bassett, E T Owens, K E Daniels, M A Porter, Influence of network topology on sound propagation in granular materials, Phys. Rev. E 86, 041306, (2012).
https://doi.org/10.1103/PhysRevE.86.041306

[58] J S Lin, M M Chen, B T Chao, A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds, AIChE Journal 31, 473, (1985).
https://doi.org/10.1002/aic.690310314

[59] J Neuwirth, S Antonyuk, S Heinrich, M Jacob, CFD–DEM study and direct measurement of the granular flow in a rotor granulator. Chemical Engineering Science 86, 163, (2013).
https://doi.org/10.1016/j.ces.2012.07.005

[60] X Tao, H Wu, The translational and rotational motions of a cylindrical particle in a granular shear flow inside a split bottom Couette cell Physics of Fluids 32, 073310, (2020).
https://doi.org/10.1063/5.0015175

[61] F Rech, K Huang, Radar for projectile impact on granular media, International Journal of Microwave and Wireless Technologies 12, 7, (2020).
https://doi.org/10.1017/S1759078720000586

[62] S Gerth, J Claußen, et al., Semiautomated 3D Root Segmentation and Evaluation Based on X-Ray CT Imagery, Plant Phenomics 2021, (2021).
https://doi.org/10.34133/2021/8747930

[63] M Baur, N Uhlmann, T P ̈oschel, M Schr ̈oter, Correction of beam hardening in X-ray radiograms, Review of Scientific Instruments 90, 025108, (2019).
https://doi.org/10.1063/1.5080540

[64] E And`o, G Viggiani, S A Hall, J Desrues, Experimental micro-mechanics of granular media studied by x-ray tomography: recent results and challenges, G ́eotechnique Letters 3, 146, (2013).
https://doi.org/10.1680/geolett.13.00036

[65] O Okubadejo, Z Karatza, E And`o, et al., Identification and tracking of particles undergoing progressive breakage under stress with 3D+ t image analysis, Proceedings ICTMS, (2017).
https://meetingorganizer.copernicus.org/ICTMS2017/ICTMS2017-48-1.pdf

[66] E And`o, J Dijkstra, E Roubin, et al., A peek into the origin of creep in sand, Granular Matter 21, 11, (2019).
https://doi.org/10.1007/s10035-018-0863-5

[67] G Viggiani, E And`o, D Takano, J C Santamarina, Laboratory X-ray Tomography: A Valuable Experimental Tool for Revealing Processes in Soils, Geotechnical Testing Journal 38, 20140060, (2014).
https://doi.org/10.1520/GTJ20140060

[68] A D Martins, F O’Callaghan, A G Bengough, et al., The helical motions of roots are linked to avoidance of particle forces in soil, New Phytologist 225, 2356, (2020).
https://doi.org/10.1111/nph.16312

[69] T M Buzug, Computed Tomography, Springer-Verlag Berlin, Heidelberg (2008).
https://link.springer.com/book/10.1007/978-3-540-39408-2

[70] A Hemmerle, M Schr ̈oter, L Goehring, A cohesive granular material with tunable elasticity, Scientific Reports 6, 35650, (2016).
https://doi.org/10.1038/srep35650

[71] Z Li, Z Zeng, Y Xing, et al., Microscopic structure and dynamics study of granular segregation mechanism by cyclic shear, Science Advances 7, eabe8737, (2021).
https://doi.org/10.1126/sciadv.abe8737

[72] Y Yuan, Y Xing, J Zheng, et al., Experimental Test of the Edwards Volume Ensemble for Tapped Granular Packings, Phys. Rev. Letters 127, 018002, (2021).
https://doi.org/10.1103/PhysRevLett.127.018002

[73] T B ̈orzs ̈onyi, B Szab ́o, et al., Shear-induced alignment and dynamics of elongated granular particles, Phys. Rev. E 86, 051304, (2012).
https://doi.org/10.1103/PhysRevE.86.051304

[74] C Xia, K Zhu, Y Cao, et al., X-ray tomography study of the random packing structure of ellipsoids. Soft Matter 10, 996, (2014).
https://doi.org/10.1039/C3SM52841C

[75] Y Wang, C Xia, Y Cao, et al., Fast x-ray micro-tomography imaging study of granular packing under tapping, SPIE 9212, 131, (2014).
https://doi.org/10.1117/12.2058424

[76] S Waktola, A Bieberle, F Barthel, et al., A new data-processing approach to study particle motion using ultrafast X-ray tomography scanner: case study of gravitational mass flow, Experiments in Fluids 59, 69, (2018).
https://doi.org/10.1007/s00348-018-2523-2

[77] R Stannarius, D S Martinez, T B ̈orzs ̈onyi, et al., High-speed x-ray tomography of silo discharge, New Journal of Physics 21, 113054, (2019).
https://doi.org/10.1088/1367-2630/ab5893

[78] T Homan, R Mudde, D Lohse, D v Meer, High-speed X-ray imaging of a ball impacting on loose sand, Journal of Fluid Mechanics 777, 706, (2015).
https://doi.org/10.1017/jfm.2015.375

[79] M H Khalili, S Brisard, M Bornert, et al., Discrete Digital Projections Correlation: A Reconstruction-Free Method to Quantify Local Kinematics in Granular Media by X-ray Tomography, Experimental Mechanics 57, 830, (2017).
https://doi.org/10.1007/s11340-017-0263-5

[80] A Gupta, R S Crum, C Zhai, et al., Quantifying particle-scale 3D granular dynamics during rapid compaction from time-resolved in situ 2D x-ray images, Journal of Applied Physics 129, 225902, (2021).
https://doi.org/10.1063/5.0051642

[81] E And`o, B Marks, S Roux, Single-projection reconstruction technique for positioning monodisperse spheres in 3D with a divergent x-ray beam, Measurement Science and Technology 32, 095405, (2021).
https://doi.org/10.1088/1361-6501/abfbfe

[82] M J Berger, J H Hubbell, et al., NIST XCOM: Photon Cross Sections Database - Version History, XCOM: Photon Cross Section Database (version 1.5), (2010).
https://dx.doi.org/10.18434/T48G6X

[83] J E Kollmer, T Shreve, et al., Migrating Shear Bands in Shaken Granular Matter, Phys. Rev. Letters 125, 048001, (2020).
https://doi.org/10.1103/PhysRevLett.125.048001

[84] C Xia, J Li, Y Cao, et al., The structural origin of the hard-sphere glass transition in granular packing, Nature Communications 6, 8409, (2015).
https://doi.org/10.1038/ncomms9409

[85] M Neudecker, S Ulrich, S Herminghaus, M Schr ̈oter, Jammed Frictional Tetrahedra are Hyperstatic, Phys. Rev. Letters 111, 028001, (2013).
https://doi.org/10.1103/PhysRevLett.111.028001

[86] Z Xu, J Yang, Y Ding, et al., Packing and void structures of octahedral, dodecahedral and icosahedral granular particles, Granular Matter 23, 88, (2021).
https://doi.org/10.1007/s10035-021-01156-9

[87] I Vlahini ́c, E And ́o, G Viggiani, et al., Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images, Granular Matter 16, 21, (2014).
https://doi.org/10.1007/s10035-013-0460-6

[88] M Wiebicke, E And ́o, I Herle, G Viggiani, On the metrology of interparticle contacts in sand from x-ray tomography images, Measurement Science and Technology 28, 124007, (2017).
https://doi.org/10.1088/1361-6501/aa8dbf

[89] D J Bull, J A Smethurst, I Sinclair, et al., Mechanisms of root reinforcement in soils: an experimental methodology using four-dimensional X-ray computed tomography and digital volume correlation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, 20190838, (2020).
https://doi.org/10.1098/rspa.2019.0838

[90] F Anselmucci, E And`o, G Viggiani, et al., Imaging local soil kinematics during the first days of maize root growth in sand, Scientific Reports 11, 22262, (2021).
https://doi.org/10.1038/s41598-021-01056-1

[91] S Weis, G E Schr ̈oder-Turk, M Schr ̈oter, Structural similarity between dry and wet sphere packings, New Journal of Physics 21, 043020, (2019).
https://doi.org/10.1088/1367-2630/ab1517

[92] T Hiller, J Ardevol-Murison, A Muggeridge, et al., The Impact of Wetting Heterogeneity Distribution on Capillary Pressure and Macroscopic Measures of Wettability, SPE Journal 24, 214, (2019).
https://doi.org/10.2118/194191-PA

[93] N Brodu, J A Dijksman, R P Behringer, Spanning the scales of granular materials through microscopic force imaging, Nature Communications 6, 6361, (2015).
https://doi.org/10.1038/ncomms7361

[94] R C Hurley, S A Hall, J E Andrade, J Wright, Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials, Phys. Rev. Letters 117, 098005, (2016).
https://doi.org/10.1103/PhysRevLett.117.098005

[95] R Hurley, C Zhai, Challenges and opportunities in measuring time-resolved force chain evolution in 3D granular materials, Papers in Physics 14, 140003, (2022).
https://doi.org/10.4279/pip.140003

[96] M I Skolnik Radar handbook, 3rd ed, McGraw-Hill, New York (2008).


[97] S Saponara, M S Greco, F Gini, Radar-on-Chip/in-Package in Autonomous Driving Vehicles and Intelligent Transport Systems: Opportunities and Challenges, IEEE Signal Processing Magazine 36, 84, (2019).
https://doi.org/10.1109/MSP.2019.2909074

[98] M Schr ̈oter, S Ulrich, J Kreft, et al., Mechanisms in the size segregation of a binary granular mixture, Phys. Rev. E 74, 011307, (2006).
https://doi.org/10.1103/PhysRevE.74.011307

[99] P B Umbanhowar, R M Lueptow, J M Ottino, Modeling Segregation in Granular Flows, Annual Review of Chemical and Biomolecular Engineering 10, 153, (2019).
https://doi.org/10.1146/annurev-chembioeng-060718-030122

[100] C E Rasmussen, C K Williams, Gaussian processes for machine learning, MIT Press, (2006).
https://doi.org/10.7551/mitpress/3206.001.0001

[101] E Altshuler, H Torres, A Gonz ́alez-Pita, et al., Settling into dry granular media in different gravities, Geophysical Research Letters 41, 3037, (2014).
https://doi.org/10.1002/2014GL059229

[102] S K ̈ostler, J Zhao, C Lyu, et al., Embedded inertial sensor for tracking projectile impact on granular media, EPJ Web of Conferences 249, 15007, (2021).
https://doi.org/10.1051/epjconf/202124915007

[103] CORDIS How to explore inaccessible places by swarms of sensors, Phys.Org magazine, May (2019).
https://phys.org/news/2019-05-explore-inaccessible-swarms-sensors.html

[104] C Bizon, M D Shattuck, J B Swift, W D Mc-Cormick, H L Swinney, Patterns in 3D Vertically Oscillated Granular Layers: Simulation and Experiment, Phys. Rev. Letters 80, 60, (1998).
https://doi.org/10.1103/PhysRevLett.80.57

[105] T B ̈orzs ̈onyi, R E Ecke, J N McElwaine, Patterns in Flowing Sand: Understanding the Physics of Granular Flow, Phys. Rev. Letters 103, 178302, (2009).
https://doi.org/10.1103/PhysRevLett.103.178302

[106] L Butzhammer, S V ̈olkel, I Rehberg, K Huang, Pattern formation in wet granular matter under vertical vibrations, Phys. Rev. E 92, 012202, (2015).
https://doi.org/10.1103/PhysRevE.92.012202

[107] M Tsukahara, S Mitrovic, V Gajdosik, et al., Coupled tomography and distinct-element-method approach to exploring the granular media microstructure in a jamming hour-glass, Phys. Rev. E 77, 061306, (2008).
https://doi.org/10.1103/PhysRevE.77.061306

[108] M N Bannerman, J E Kollmer, A Sack, et al., Movers and shakers: Granular damping in microgravity, Phys. Rev. E 84, 011301, (2011).
https://doi.org/10.1103/PhysRevE.84.011301

[109] K Huang, A Hard-Sphere Model for Wet Granular Dynamics, In: Proceedings of China-Europe Conference on Geotechnical Engineering Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-97112-4_38

[110] W Wu, H-S Yu, (editors) Proceedings of China-Europe Conference on Geotechnical Engineering: Volume 2, 1st ed., Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-97115-5

[111] R Moreno-Atanasio, R A Williams, X Jia, Combining X-ray microtomography with computer simulation for analysis of granular and porous materials, Particuology 8, 99, (2010).
https://doi.org/10.1016/j.partic.2010.01.001

[112] M Dosta, U Br ̈ockel, L Gilson, et al., Application of micro computed tomography for adjustment of model parameters for discrete element method, Chemical Engineering Research and Design 135, 128, (2018).
https://doi.org/10.1016/j.cherd.2018.05.030

[113] D Puzyrev, K Harth, T Trittel, R Stannarius, Machine Learning for 3D Particle Tracking in Granular Gases Microgravity Science and Technology 32, 906, (2020).
https://doi.org/10.1007/s12217-020-09800-4

[114] A L Nicu ̧can, C R Windows-Yule, Positron emission particle tracking using machine learning Review of Scientific Instruments 91, 013329, (2020).
https://doi.org/10.1063/1.5129251

[115] J Lehtinen, J Munkberg, J Hasselgren, et al., Noise2Noise: Learning Image Restoration without Clean Data, arXiv:1803.04189 [cs, stat], (2018).
https://proceedings.mlr.press/v80/lehtinen18a.html

[116] W Cong, Y Xi, B D Man, G Wang, Monochromatic image reconstruction via machine learning, Machine Learning: Science and Technology 2, 025032, (2021).
https://doi.org/10.1088/2632-2153/abdbff

[117] F Van, S Vanheule, L Van, M N Boone, The Spectral X-ray Imaging Data Acquisition (SpeXIDAQ) Framework, Sensors 21, 563, (2021).
https://doi.org/10.3390/s21020563

[118] K H Jin, M T McCann, E Froustey, M Unser, Deep Convolutional Neural Network for In-verse Problems in Imaging, IEEE Transactions on Image Processing 26, 4522, (2017).
https://doi.org/10.1109/TIP.2017.2713099