[1] R. B. Griffiths, Peierls Proof of Spontaneous Magnetization in a Two-Dimensional Ising Ferromagnet, Phys. Rev., 136, A437-A439, (1964).
https://doi.org/10.1103/PhysRev.136.A437

[2] J. Fröhlich, B. Simon, Infrared Bounds, Phase Transitions and Continuous Symmetry Breaking, Commun. Math. Phys., 50, 79-85, (1976).
https://doi.org/10.1007/BF01608557

[3] J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, D. R. Nelson, Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model, Phys. Rev. B, 16, 1217-1241, (1977).
https://doi.org/10.1103/PhysRevB.16.1217

[4] R. B. Griffiths, Free Energy of interacting magnetic dipoles, Phys. Rev., 176, 655-659, (1968).
https://doi.org/10.1103/PhysRev.176.655

[5] N. D. Mermin, H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett., 17, 1133-1136, (1966).
https://doi.org/10.1103/PhysRevLett.17.1133

[6] C. Gong et al., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature, 546, 265-269, (2017).
https://doi.org/10.1038/nature22060

[7] B. Huang et al., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature, 546, 270-273, (2017).
https://doi.org/10.1038/nature22391

[8] K. S. Burch, D. Mandrus, J.-G. Park, Magnetism in two-dimensional van der Waals materials, Nature, 563, 47-52, (2018).
https://doi.org/10.1038/s41586-018-0631-z

[9] Y. Li, B. Yang, S. Xu, B. Huang, W. Duan, Emergent Phenomena in Magnetic Two-Dimensional Materials and van der Waals Heterostructures, ACS Appl. Electron. Mater., 4, 3278-3302, (2022).
https://doi.org/10.1021/acsaelm.2c00419

[10] M. Gibertini, M. Koperski, A. F. Morpurgo, K. S. Novoselov, Magnetic 2D materials and heterostructures, Nature Nanotechnology, 408, 408-419, (2019).
https://doi.org/10.1038/s41565-019-0438-6

[11] C. Dai et al., Research progress of two-dimensional magnetic materials, China Mater., 66, 859-876, (2023).
https://doi.org/10.1007/s40843-022-2298-0

[12] Y. Wu et al., Interlayer engineering of Fe₃GeTe₂: From 3D superlattice to 2D monolayer, Proc. Nat. Ac. Sci., 121, (4) e2314454121, (2024).
https://doi.org/10.1073/pnas.2314454121

[13] M. L. Néel, Anisotropie magnetique superficielle et surstructures d'orientation, J. Phys. Radium, 15, 225-239, (1954).
https://doi.org/10.1051/jphysrad:01954001504022500

[14] J. G. Gay, R. Richter, Spin Anisotropy of Ferromagnetic Films, Phys. Rev. Lett., 56, 2728-2731, (1986).
https://doi.org/10.1103/PhysRevLett.56.2728

[15] J. G. Gay, R. Richter, Spin anisotropy of ferromagnetic slabs and overlayers, J. Appl. Phys., 61, 3362-3365, (1987).
https://doi.org/10.1063/1.338770

[16] L.-P. Shi, Perpendicular magnetic anisotropy in ultrathin fcc iron films and surfaces at finite temperature, Physics Letters A, 189, 409-414, (1994).
https://doi.org/10.1016/0375-9601(94)90025-6

[17] P. Politi, A. Rettori, M. G. Pini, D. Pescia, Magnetic Phase Diagram of a Thin Film with a Reorientation Transition, Europhysics Letters, 28, 71, (1994).
https://doi.org/10.1209/0295-5075/28/1/013

[18] L. M. Small, V. Heine, A couple method for calculating interatomic interactions in itinerant electron magnetic systems, J. Phys. F: Met. Phys., 14, 3041-3052, (1984).
https://doi.org/10.1088/0305-4608/14/12/025

[19] Z. Q. Qiu, J. Pearson, S. D. Bader, Asymmetry of the Spin Reorientation Transition in Ultrathin Fe Films and Wedges Grown on Ag(100), Phys. Rev. Lett., 70, 1006-1009, (1993).
https://doi.org/10.1103/PhysRevLett.70.1006

[20] O. Portmann et al., Micromagnetism in the ultrathin limit, Thin Solid Films, 505, 2-9, (2006).
https://doi.org/10.1016/j.tsf.2005.10.009

[21] N. Saratz et al., Critical exponents and scaling invariance in the absence of a critical point, Nat. Commun., 7, 13611, (2016).
https://doi.org/10.1038/ncomms13611

[22] N. Saratz et al., Irreversibility, reversibility, and thermal equilibrium in domain patterns of Fe films with perpendicular magnetization, Phys. Rev. B, 82, 184416, (2010).
https://doi.org/10.1103/PhysRevB.82.184416

[23] U. Gradmann, J. Korecki, G. Waller, In-Plane Magnetic Surface Anisotropies in Fe(110), Appl. Phys. A, 39, 101-108, (1986).
https://doi.org/10.1007/BF00616826

[24] S. Miesch, A. Fognini, Y. Acremann, A. Vaterlaus, T. U. Michlmayr, Fe on W(110), a stable magnetic reference system, J. Appl. Phys., 109, 013905, (2011).
https://doi.org/10.1063/1.3528235

[25] A.-K. Thamm et al., Hallmark of quantum skipping in energy filtered lensless scanning electron microscopy, Appl. Phys. Lett., 120, 052403, (2022).
https://doi.org/10.1063/5.0077503

[26] H. Brune, Epitaxial Growth of Thin Films, in "Surface and Interface Science", Editor: K. Wandelt, p.421-492, (2014), Wiley-VCH Verlag.
https://doi.org/10.1002/9783527680566.ch20

[27] R. Allenspach et al., Dzyaloshinskii-Moriya interaction in Ni/Cu(001), Phys. Rev. B, 110, 014402, (2024).
https://doi.org/10.1103/PhysRevB.110.014402

[28] C. Back, Ch. Würsch, A. Vaterlaus, U. Ramsperger, U. Maier, D. Pescia, Experimental confirmation of universality for a phase transition in two dimensions, Nature, 378, 597-600, (1995).
https://doi.org/10.1038/378597a0

[29] D. P. Pappas, K.-P. Kämper, H. Hopster, Reversible Transition between Perpendicular and In-Plane Magnetization in Ultrathin Films, Phys. Rev. Lett., 64, 3179-3182, (1990).
https://doi.org/10.1103/PhysRevLett.64.3179

[30] J. F. Cochran et al., Magnetic anisotropies in ultrathin fcc Fe(001) films grown on Cu(001) substrates, Phys. Rev. B, 45, 4676-4685, (1992).
https://doi.org/10.1103/PhysRevB.45.4676

[31] A. Berger, H. P. Oepen, Magnetic domain walls in ultrathin fcc cobalt films, Phys. Rev. B, 45, 12596-12599, (1992).
https://doi.org/10.1103/PhysRevB.45.12596