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On the spontaneous magnetization of two-dimensional ferromagnets

D. Pescia,1∗A. Vindigni1,2†

Ferromagnetism is typically discussed in terms of the exchange interaction and magnetic
anisotropies. Yet real samples are inevitably affected by the magnetostatic dipole-dipole
interaction. Because of this interaction, a theorem [R.B. Griffiths, Free Energy of inter-
acting magnetic dipoles, Phys. Rev. 176, 655 (1968)] forbids a spontaneous magnetization
in, nota bene, three-dimensional bodies. Here we discuss perpendicularly and in-plane
magnetized ferromagnetic bodies in the shape of a slab of finite thickness. In perpendicu-
larly magnetized slabs, magnetic domains are energetically favored when the lateral size is
sufficiently large, i.e., there is no spontaneous magnetization. For in-plane magnetization,
instead, spontaneous magnetization is possible below a critical thickness which, in very
thin films, could be as small as few monolayers. At this critical thickness, we predict
a genuine phase transition to a multi-domain state. These results have implications for
two-dimensional ferromagnetism.

I Introduction

A familiar situation in ferromagnetism foresees
that, below the Curie temperature, the graph of
the free-energy as a function of the magnetization
has a flat portion [1] (graph “a” in Fig. 1). This
flatness defines a situation in which the magne-
tization can acquire a value between zero and a
so-called “spontaneous magnetization” ±Ms with-
out any change in the free energy. This “flatness”
is a property of the thermodynamic limit, i.e., of
infinite bodies. In finite bodies, the free energy
assumes a shape that resembles the graph “b” in
Fig. 1, ±Ms being the values at which the free en-
ergy has minima. Systems with spontaneous mag-
netization are, for example, the Ising and classical
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Heisenberg ferromagnets in three dimensions (3D)
[1,2], the 2D-Ising model or the 2D-planar and clas-
sical 2D-Heisenberg models with symmetry break-
ing single-ion interactions [3]. In real ferromag-
netic bodies, however, the inevitable dipole-dipole
interaction, originating within Maxwell’s equations
for magnetostatics, must be considered alongside
the main exchange interaction (of purely quan-
tum mechanical origin) and the single-ion magnetic
anisotropies (produced by the spin-orbit interac-
tion). The dipole-dipole interaction is, typically,
much weaker than the exchange interaction (by
about two orders of magnitude). Yet, it is long-
ranged, as it decays only with the third power of
the distance between two magnetic moments. Be-
cause of the dipole-dipole interaction, a theorem,
proved by Griffiths [4] for bodies with linear dimen-
sion L approaching infinity along all three spatial
dimensions, implies that any non-zero magnetiza-
tion produces an increase of the free energy, i.e.,
the graph of the free energy as a function of M has
a minimum at M = 0 at any temperature (graph
“c” in Fig. 1). Accordingly, ferromagnetic order
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Figure 1: The free energy F as a function of M . a: The
graph for an infinite ferromagnetic body with sponta-
neous magnetization has a flat portion between ±Ms

below the Curie temperature (see Ref.[1]). b: For a fi-
nite ferromagnetic body, the free energy has minima at
±Ms. c: A theorem by Griffiths [4] implies that the free
energy has a minimum at M = 0 at any temperature.

can only be local and, globally, the spontaneous
magnetization is exactly vanishing.
This no-spontaneous magnetization rule is some-

what similar to the absence of long-range or-
der foreseen for the isotropic 2D-planar and 2D-
Heisenberg ferromagnets [5] but it refers, remark-
ably, to a 3D-body. In fact, it appears that an im-
portant assumption underlying Griffith’s theorem
is the size of the body approaching infinity along
all three spatial dimensions. In this paper, we dis-
cuss ferromagnetism in the presence of exchange,
magnetic anisotropy and dipole-dipole interaction,
but in a thin film geometry, where only two spatial
dimensions are allowed to increase and the third is
assigned a finite thickness. Our results should be
relevant for discussing ferromagnetism in the new
class of monolayer thin materials obtained by me-
chanical exfoliation [6–11]. They are known to be
perfectly flat over large distances and have been
shown to be vertically engineerable [12]. As exper-
iments are often analyzed in term of abstract mod-
els, exact theorems such as Griffiths’s [4] or scaling
arguments such as those presented here should al-
low experiments to distinguish those features that
are general and universal from those that originate
from less known details of a sample (such as de-
fects).

Before we proceed, we describe the general as-
sumptions underlying all our arguments. We model
a thin film by a slab with area L2 and thickness
d<<L. The slabs host a continuous magnetization
distribution. The use of a continuous model re-
quires establishing a link to “real” samples, which
host magnetic moments on a lattice. We establish
the link by assuming that the magnetization is mea-
sured in units of M0=̇

g·µB ·S
a3 , thereby introducing

the atomic scale quantities g (the g-factor), S (the
spin at a lattice site, in units of h̄) and a (the lattice
constant for a simple cubic lattice). By these as-
sumptions, the thickness of the slab corresponding
to “1 Monolayer” (1ML) is a. Finally, we assume
that the magnetization is independent of the coor-
dinate z perpendicular to the film plane. We will
comment on this assumption in Section IV.

II Perpendicular magnetization

We first analyze the situation of perpendicular
magnetization. In the state of spontaneous perpen-
dicular magnetization, all magnetic moments in the
slab point along one of the two z-directions perpen-
dicular to the slab (Fig. 2a), e.g., the +z-direction.
In Fig. 2a, this state is rendered with a white color
and the magnetization vector with absolute value
M0 is given by a black arrow. A possible, ele-
mentary state of vanishing spontaneous magneti-
zation is shown in Fig. 2b. One half of the slab
is still filled with magnetic moments pointing up-
wards (“↑”) but the other half (gray in Fig. 2b)
contains magnetic moments pointing downwards
(“↓”) (indicated as state ↑↓ henceforth). Assuming
that Griffith’s theorem is valid for the perpendicu-
lar magnetization in the slab geometry as well, the
↑↓ state should have a lower total energy than the
state of spontaneous uniform magnetization (indi-
cated as state ↑↑ henceforth).

i The magnetostatic energy

The magnetostatic energy EM for the perpendicu-
lar magnetization configuration is most appropri-
ately computed as the energy of the interacting
Ampèrian effective current densities ∇⃗ × M⃗(r⃗) re-

sulting from the magnetization vector M⃗(r⃗) (see
Section I of the Supplementary Material (SM)).
The current density vectors arising in the ↑↑ and
↑↓ configurations are summarized by red arrows in
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Fig. 2. We find that the formation of the two neigh-
boring domains with opposite magnetization lowers
the total magnetostatic energy and is thus the driv-
ing force behind the suppression of the spontaneous
magnetization, i.e., EM (↑↓) − EM (↑↑) is negative.
The self-energies of the Ampèrian currents circu-
lating along the perimeter of the slab cancel out
exactly from EM (↑↓) − EM (↑↑). Their mutual in-
teraction provides terms of the order L · d2. The
leading contribution to EM (↑↓) − EM (↑↑) is the
self-energy of the current flowing along the wall
that separates the domains. Assuming that the
domain wall has a thickness w, the leading con-
tribution of EM (↑↓) − EM (↑↑) is proportional to
(Section I, SM),

−L · d
a2

· 2
π
·
(
Ω · d

a

)
· ln
(
L

w

)
, (1)

in the limit d ≪ w ≪ L. In Eq. 1, L ·d is the
surface of the domain wall. Ω

.
= µ0

2 · M2
0 · a3 is a

parameter used for expressing the strength of the
magnetostatic energy per unit volume cell (we refer
to Section I of SM and the Tables in Section IV for
representative values of Ω and the further parame-
ters introduced in this paper). The slab model (see
Section I of SM) shows explicitly that the relevant
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Figure 2: a: The state of uniform perpendicular magne-
tization (represented in white) in a slab. The magneti-
zation vector is represented by the vertical black arrow.
Red arrows represent the effective current density vec-
tors flowing along the perimeter of the slab. b: The
slab is filled by two domains with magnetization vector
parallel (white domain) and antiparallel (gray domain)
to the vertical z-axis. Red arrows represent the effec-
tive current density vectors.

coupling constant entering EM (↑↓)−EM (↑↑) is not
Ω itself, but Ω · da , i.e., the characteristic magneto-
static energy per unit surface cell. The logarithmic
term in Eq. 1 provides, formally, a divergence of
EM (↑↓)−EM (↑↑) with the size L. It is universal
in the sense that it does not depend on the exact
geometry of the wall separating the domains: both
the shape of this wall and the exact shape of the
slab contribute only terms of the order Ω·L ·d2.

A technical aspect: the integrals of Section I of
SM can be managed to cover the case d ≫ w. In
this limit, d replaces w in the argument of the log-
arithm of Eq. 1. The case of d ≈ w is more subtle.
Given the fact that the cross section of the wire car-
rying the effective current is d ·w, we heuristically
assume that ≈

√
d · w appears in the argument of

the logarithm. Later, (see Eq. 2), we will show that
w depends on various material parameters and di-
verges in some situations, so that we will continue
our discussion having the “ultrathin” limit d ≪ w
in mind, as d is one parameter that is defined by
the experiment, not by the material.

ii The energy of the domain wall

The formation of a domain wall in the ↑↓-state in-
creases the total energy of the ferromagnetic slab
and therefore promotes the state of spontaneous
magnetization. For simplicity, we assume the wall
to run parallel to the x-direction and the rotation
to take place along the y-direction. We now list
the various energies involved in the formation of
the wall.

Néel single-ion magnetic anisotropy. Within the
wall, the magnetic moments rotate away from the
z-direction. Let the rotation be characterized by an
angle θ, which increases from 0 to π when moving
along y within the wall. The misalignment is as-
sociated, in the first place, with an increase of the
single-ion magnetic anisotropy energy that favors
the perpendicular magnetization introduced con-
ceptually by Néel [13] and computed for the first
time from first principles by Gay and Richter [14]
for the monolayer of Fe. This anisotropy origi-
nates from the breaking of translational symmetry
perpendicular to the film. It is, accordingly, pro-
portional to cos2 θ(y). We call the proportionality
constant −λ, the negative sign indicating that this
anisotropy favors the state of perpendicular mag-
netization. As this anisotropy is located mainly at
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the two surfaces bounding the thin film, the pro-
portionality constant λ scales with the area of the
film, not with its volume [15]. Accordingly, λ is
only weakly dependent on d [15]. Actually, spin
wave excitations produce a temperature and d de-
pendence of λ and Ω [16, 17]. This will have an
impact on the crossover length to a multidomain
state (see later in the paper).

The magnetostatic energy. The magnetostatic
energy itself favors the magnetic moment to lie
within the slab plane and contributes a term +Ω·
d
a ·cos

2 θ(y) (Section II of SM). In contrast to λ, the
coefficient of the dipolar contribution scales with d
(see Section II of SM and Ref. [15]).

The exchange energy. Finally, for the building
of the wall, one must also consider that the mis-
alignment of two neighboring magnetic moments
at the sites y and y±a increases the energy by [18]
J · S2 · cos (θ(y ± a)− θ(y)), J being the exchange
coupling energy per spin couple. In Section III of
the SM, we find an expression for the equilibrium
width w of the domain wall and for its total energy
Ew which includes λ, J and the magnetostatic con-
tribution:

w⊥ =
a

2

√
2 · J · S2

λ− Ω d
a

, (2)

Ew⊥ =
L · d
a2

·

[
2 ·

√(
λ− Ω· d

a

)
·2·J · S2

]
,(3)

(when necessary, we use the symbol w⊥ for the wall
width in the state of perpendicular magnetization,
to be distinguished from the wall width w∥ that we
will use later in the state of in-plane magnetiza-
tion). We have some comments referring to these
equations. Suppose (see Section II of SM for more
details) that we fill the slab with a uniform magne-

tization distribution M⃗ = (sin θ, 0, cos θ) (θ being
the angle with respect to the z-direction). The to-
tal anisotropy energy per unit surface is given by
(−λ + Ω · d

a ) · cos
2 θ. When λ>Ω · da , the state of

perpendicular magnetization is the preferred one.
In this state, the argument of the square roots in
Eqs. 2 and 3 is positive: w and Ew have finite
values. However, as d → dR

.
= λ

Ω · a, w tends to
infinity and Ew to zero. Notice that spin wave ex-
citations produce a slightly different renormaliza-
tion of λ and Ω as a function of temperature and
thickness [16, 17] so that dR is itself a function of

the temperature. Previous works [16, 17, 19] have
established that dR(T ) defines a line of phase tran-
sitions at which the perpendicular magnetization
turns into the plane of the slab.

iii Absence of spontaneous magnetization
and crossover length

We are now able to drive conclusions about the ab-
sence of spontaneous magnetization and crossover
length. Comparing the domain wall energy cost to
the magnetostatic energy gain, we recognize that
the logarithmic term always favors the building of
domains for sufficiently large L. Accordingly, Grif-
fith’s theorem about the absence of spontaneous
magnetization in the thermodynamic limit holds
true in the slab geometry with perpendicular mag-
netization.

One interesting outcome of our argument is the
estimate of the cross-over length Lc at which a slab
will transit from a monodomain state to a multi-
domain state, resulting from equating the magne-
tostatic energy gain to the wall energy:

Lc ≈
a

2

√
2JS2

λ− Ω d
a

· exp

π
√(

λ− Ω d
a

)
· 2JS2

Ω d
a

 .

(4)
We have some comments regarding this result.

In Table 1, we observe that, sufficiently away from
dR, Lc assume values that exceed the lateral size
of common laboratory samples (mm). When mov-
ing toward dR, the exponential factor will produce
Lc to decrease to few tens of micrometers (see e.g
Ref. [21]). These are the lateral lengths over which
exfoliated two-dimensional magnets are believed to
be almost perfectly flat [6–11]. Accordingly, a se-
quence of exfoliated samples with suitable thickness
and with increasing lateral size L should allow an
insight into the yet unexplored mechanism of pen-
etration of magnetic domains in two-dimensional
ferromagnetic elements as a function of their size
L. Some preliminary results in this direction were
reported in Ref. [20] on epitaxially grown ultrathin
films.

We point out that, closer to dR(T ), the increas-
ing width w might cause Lc to increase again. This
non-monotonous behavior has no consequences re-
garding the no-spontaneous magnetization rule but
is certainly a detail that might need further consid-
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Fig.3Figure 3: a: The state of uniform in-plane magnetiza-
tion (represented in white) in a slab. The magnetiza-
tion vector is represented by the horizontal black arrow.
Effective charge densities (their sign being given in red)
appear along the perimeter. b: The slab is filled by two
domains with magnetization vector parallel (white do-
main) and antiparallel (gray domain) to the horizontal
x-axis. The sign of the effective charge densities is given
in red.

eration, both from the experimental and the theo-
retical point of view.

iv Stability against magnetic field

A final comment is dedicated to the stability
against a perpendicular magnetic field of the mul-
tidomain phase that should appear at sufficiently
large L. In Section IV of the SM, we analyze this
problem by considering the energetics of one stripe
of reversed magnetization −M0, embedded into a
background with magnetization +M0, subject to
a perpendicularly applied field with strength +B0.
We find that the state of uniform magnetization
becomes the energetically favored one when B0 ex-
ceeds a threshold strength Bt ∝ µ0 ·M0 · d

Lc
. Far

away from the dR(T )-transition line, the thresh-
old field might be as small as a few nT (see Ta-
ble). This means that for practical laboratory pur-
poses, even samples with mm size appear to be sin-
gle domain [21, 22]. Close to the ferromagnetic-to-
paramagnetic transition line, however, the transi-
tion field is in the mT -range [21,22].

III In-plane magnetization

We now analyze the slab geometry with in-plane
magnetization. In the two configurations consid-
ered, one has uniform magnetization along, e.g., the
+x-direction (Fig. 3a), and one has half of the slab
with magnetization along the +x-direction and the
other half with magnetization along −x (Fig. 3b).
In this situation, the magnetostatic energy is most
appropriately computed as the Coulomb interac-
tion between effective “charges” produced by ∇⃗ ·
M⃗(r⃗). The charges resulting from the two spin
configurations are indicated in Fig. 3 in red. The
change of magnetostatic energy produced by the
building of in-plane domains is negative, i.e., the
magnetostatic energy favors a state of vanishing
spontaneous magnetization. However, the logarith-
mic terms produced by the self-energies cancel out
exactly when the energies of the two states are sub-
tracted, provided the wall is parallel to the mag-
netization, i.e., the wall is not charged. The re-
maining contributions provide terms proportional
to −(Ω · d) · L · d (Section V, SM). Again, there
is a wall between the two domains, in which spins
rotate away from the x-direction. We assume, for
simplicity, an in-plane anisotropy with the strength
Λ such as the one encountered in ultrathin Fe films
on W(110) [23] (see also Table 2). This anisotropy
provides an energy barrier against rotations away
from the x in-plane direction. Λ is not related to
the breaking of translational symmetry along z and
is, accordingly, much smaller than the Néel mag-
netic anisotropy constant forthcoming in the per-
pendicular magnetization configuration. Λ is rather
of the same order of magnitude as the quartic in-
plane magnetic anisotropy constant computed, e.g.,
in Ref. [14]. Given Λ, by the same arguments
used in Section III of SM, the domain wall width

is w∥ ≈ a ·
√

J·S2

Λ and the energy of the wall is

≈L· d· 2·
√
Λ·2 · J · S2.

Equating the total energy change due to the for-
mation of a domain wall to zero provides an esti-
mate of the critical thickness dc below which a state
of spontaneous magnetization is favored:

dc = O

(
a ·

√
Λ · J · S2

Ω

)
. (5)

As L cancels out, we argue that it should be possi-
ble to find a rigorous proof of spontaneous magne-
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Table 1: Summary of typical experimental and theoretical values (perpendicular magnetization). (1): Values
obtained from the quoted calculations. (2): Experimental value obtained from the value for D in Ref. [18].
(3): Estimated values from the equations described in the present paper, using the values of line 1 (d = a). (4):
fcc Fe, a = 0.361 nm. (5): bcc Fe on a Ag(100) surface, room temperature. (6): fcc Fe on Cu(100)(a = 0.361
nm), at 150 K. (7): Ni on Cu(100), d between 2 to 7 nm. (8): fcc Fe on Cu(100), about 2 ML. (9): 3 ML Fe on
Cu(100), room temperature (estimated from Table 1 in Ref. [30]).

Perp. J ·S2 †λ ‡Ω w⊥ Lc dR Bt

[meV] [meV] [meV] [nm] [m] [ML] [Tesla]
(1) ∗46 [18] 0.38 [14] 0.3 [14] 1.5 [14]
(2) ∗36 [18]
(3) 0.28 5 ≈ 105 1.26 ≈ 10−10

(4) 0.7−1.1 [16] 5-8 [16]
(5) 6 [19]
(6) 3 [29]
(7) ≈ 40 [27] 10 [27]
(8) ≈ 10−3 [21, 22]
(9) ≈1 [30]

∗ Theoretical values for bulk bcc Fe. Realistic computations find values for the exchange interaction between atoms which
are further away than nearest neighbors. The value we use here is obtained by simplifying Eq. 4.10 of Ref. [18] for the spin
wave stiffness constant to D ≈ S · J · a2. An effective value for J is then obtained using the values of Table 1 in Ref. [18].
S ≈ 1.1 [18]. † Per unit surface cell. ‡ Per bulk unit cell. Fe atoms occupying a bcc lattice, i.e., 2 atoms in the unit cell,
each carrying a magnetic moment of 2.2µB (g ≈ 2 [18], S ≈ 1.1 [18]). µ0 = 4π · 10−7 · T ·m

A
, µB = 9.3 · 10−24 · Joule

T
,

a = 2.83 · 10−10 ·m, 1 · Joule = 6.2 · 1018 · eV .

tization even in the thermodynamic limit L → ∞
in a truly 2D system with in-plane magnetization.
As both states above and below dc are stable for
L → ∞, the transition at dc from a single-domain
state with spontaneous magnetization to a multi-
domain stripe state should be a genuine phase tran-
sition. Using the typical values for Λ, J , and Ω
introduced in Table 2, we obtain dc ≈ five lattice
constants or less. This small number means that
a sample must be fabricated with uniform thick-
ness over large lateral distances in order for this
transition to be observed. The new class of two-
dimensional magnets [6–11] might provide this kind
of precision. A final remark: provided that Ω, J ,
and Λ renormalize slightly differently with temper-
ature, we might expect a dc(T ) line of phase transi-
tions which can also be crossed at a fixed thickness
d by varying the temperature. This situation would
represent the analogon to a similar phase transition
observed in perpendicularly magnetized films [22].

IV Discussion of general aspects and
summary of values for the pa-
rameters

An important question: in which ferromagnetic
samples can the 2D-dipolar behavior in Eqs. [1-5]
be detected? We recall that Eqs. [1-5] are obtained
by assuming thin films (d ≪ L) with a 2D spatial
spin degree of freedom: the spin distribution is rigid
along z and can only assume some profile along the
xy-plane. The assumption of a spatial 2D spin pro-
file restricts further d, which must fulfill the most
stringent inequalities d ≪ w⊥ (perpendicular mag-
netization) and d ≪ w∥ (in-plane magnetization),
respectively, so that any spin rotation along the
z-axis is indeed suppressed. The question is now
whether the 2D ferromagnetic dipolar behavior is
observable within the limits of these inequalities.
We argue that the range of film thickness, about
which 2D dipolar behavior is best detectable, is de-
fined by two characteristic vertical lengths: dR (for
perpendicular magnetization, see Eq.4) and dc (for
in-plane magnetization, see Eq.5). It is therefore
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Table 2: Summary of typical experimental and theoretical values (in-plane magnetization). (1): Theoretical
value, from Table 1. (2): Experimental values. (3): Estimated values from the equations described in the present
paper, using the values in 1 and 2 . (4): 5.5 ML thick Co on Cu(100), experimental values. (5): Estimated values
from the equations described in the present paper, using the values in 1 and 4 .

In-plane J ·S2 Ω Λ w|| dc
[meV] [meV] [meV per atom] [nm] [nm]

(1) 46 [18]
(2) 36 [18] 0.0026† [23] 21 [23]
(3) 0.28 26 ≈ 1
(4) ≈ 10−5 [31] ≈ 500 [31]
(5) 478 <1ML

†: Experimental value. In Ref. [23], the anisotropy parameter is given as 4.5 · 105 erg
cm3 . To convert this energy in meV per

atom we use 1 erg = 6.242 · 1011eV and a density of 2 atoms per unit volume cell, with a ≈ 0.286 nm.

required that d ≈ dR ≪ w⊥ and d ≈ dc ≪ w∥
for the observation of 2D dipolar behavior. Pro-
vided the anisotropy constants λ and Λ are not ex-
ceedingly large (precisely: ( λΩ )

2 ·(λ−Ω) ≪ ·S2 and
Λ ≪ Ω), these inequalities are fulfilled. In prac-
tice, dR and dc depend on the material parameters
and can be altered by, e.g., lattice distortion during
growth [27], but their typical values are in the sub-
nm to nm range (see Tables 1 and 2). w⊥ and w∥,
instead, are in the 10-nm-to-100-nm range (Tables
1 and 2).

A further point of discussion is the relevance
of thickness fluctuations. Ultrathin films of tran-
sition metals such as the reference system Fe on
W(110) [24] are grown on top of non-magnetic sur-
faces, consisting of terraces with typically less than
10 nm lateral size, separated by monoatomic steps.
During growth, the single layers are built from a set
of flat patches that fill progressively the monolayer
(for images of how the growth of Fe films on W(110)
proceeds in the subnanometer thickness range, see
e.g. [25]). In this growth mode (which is called
“layer-by-layer” and is, accordingly, the most fa-
vorable for minimizing thickness fluctuations [26]),
one observes that the final deposit has, typically,
thickness fluctuations in the 1ML-to-2ML range
[25]. The lateral length scale of these fluctuations
is about the size of the underlying terraces, i.e., less
that 10 nm. Recently obtained electron microscopy
images of nm thick Ni thin films on Cu(100) [27])
show impressively the flake-like structure of these
films. One could ask ”therefore” how far our ide-
ally continuous slabs can account for the magnetic

properties of thin films of transition metals on non-
magnetic metallic substrates. There is no conclu-
sive and general answer to this question. It might
be of help for the reader to learn that in-plane
magnetized thin films, such as the reference sys-
tem Fe on W(110), or perpendicularly magnetized
film such as Fe on Cu(100) are, at appropriate tem-
peratures, single domain over many µm up to mm
lateral distances [21, 22, 24, 27]. One further key
piece of information is that ultrathin Fe films on
W(110), despite the thickness fluctuations arising
from growth, undergo a very sharp ferromagnetic-
to-paramagnetic 2D Ising phase transition [28],
indicating that magnetic correlations are able to
propagate through thickness fluctuations and to de-
fine one single “global” Curie temperature. The re-
cent development of a new type of model systems,
consisting of exfoliated 2D films that are perfectly
flat over distances of a few hundred µm, is of crucial
importance for this field of research because they
provide a geometry closer to the ideal slab geome-
try discussed in this work.

We conclude the paper with two Tables (1 & 2)
that summarize some typical values for the various
parameters introduced in this paper and for the
various derived quantities. The values derived from
Eqs. 2, 3, 4, and 5 are underlined in the Tables.
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Supplemental Material: Details of the computa-
tions used to obtain Eqs. 1,2, 3, 4 and 5 are given
online in the “Supplemental Material”.
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[2] J. Fröhlich, B. Simon, Infrared Bounds, Phase
Transitions and Continuous Symmetry Break-
ing, Commun. Math. Phys., 50, 79-85, (1976).

[3] Jorge V. Jose, Leo P. Kadanoff, S. Kirk-
patrick, David R. Nelson, Renormalization,
vortices, and symmetry-breaking perturbations
in the two-dimensional planar model, Phys.
Rev. B, 16, 1217-1241, (1977).

[4] R. B. Griffiths, Free Energy of interacting mag-
netic dipoles, Phys. Rev., 176, 655-659, (1968).

[5] N. D. Mermin, H. Wagner, Absence of Ferro-
magnetism or Antiferromagnetism in One- or
Two-Dimensional Isotropic Heisenberg Models,
Phys. Rev. Lett., 17, 1133-1136, (1966).

[6] C. Gong et al., Discovery of intrinsic ferromag-
netism in two-dimensional van der Waals crys-
tals, Nature, 546, 265-269, (2017).

[7] B. Huang et al., Layer-dependent ferromag-
netism in a van der Waals crystal down to the
monolayer limit, Nature, 546, 270-273, (2017).

[8] K. S. Burch, D. Mandrus, Je-Geun Park, Mag-
netism in two-dimensional van der Waals ma-
terials, Nature, 563, 47-52, (2018).

[9] Yang Li, Baishun Yang, Shengnan Xu, Bing
Huang, Wenhui Duan, Emergent Phenomena in
Magnetic Two-Dimensional Materials and van
der Waals Heterostructures, ACS Appl. Elec-
tron. Mater., 4, 3278-3302, (2022).

[10] M. Gibertini, M. Koperski, A. F. Morpurgo,
K. S. Novoselov, Magnetic 2D materials and
heterostructures, Nature Nanotechnology, 408,
408-419, (2019).

[11] Chuying Dai et al., Research progress of two-
dimensional magnetic materials, China Mater.,
66, 859-876, (2023).

[12] Yecun Wu et al., Interlayer engineering of
Fe3GeTe2: From 3D superlattice to 2D mono-
layer, Proc. Nat. Ac. Sci., 121, (4) e2314454121
(2024).
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