[1] L Onsager, The effects of shape on the interaction of colloidal particles, Ann. N. Y. Acad. Sci. 51, 627 (1949).
doi:10.1111/j.1749-6632.1949.tb27296.x

[2] P J Flory, Thermodynamics of high polymer solutions, J. Chem. Phys. 10, 51 (1942);
doi:10.1063/1.1723621

P J Flory, Principles of Polymers Chemistry, Cornell University Press, Ithaca, NY (1953).

[3] M L Huggins, Some properties of solutions of long-chain compounds, J. Phys. Chem. 46, 151 (1942);
doi:10.1021/j150415a018

M L Huggins, Thermodynamic properties of solutions of long-chain compounds, Ann. N. Y. Acad. Sci. 43, 1 (1942);
doi:10.1111/j.1749-6632.1942.tb47940.x

M L Huggins, Theory of solutions of high polymers, J. Am. Chem. Soc. 64, 1712 (1942).
doi:10.1021/ja01259a068

[4] J P Straley, Liquid crystals in two dimensions, Phys. Rev. A 4, 675 (1971).
doi:10.1103/PhysRevA.4.675

[5] J Vieillard-Baron, Phase transitions of the classical hard-ellipse system, J. Chem. Phys. 56, 4729 (1972).
doi:10.1063/1.1676946

[6] D Frenkel, R Eppenga, Evidence for algebraic orientational order in a two-dimensional hard-core nematic, Phys. Rev. A 31, 1776 (1985).
doi:10.1103/PhysRevA.31.1776

[7] K J Strandburg, Two-dimensional melting, Rev. Mod. Phys. 60, 161 (1988).
doi:10.1103/RevModPhys.60.161

[8] A J Phares, F J Wunderlich, Thermodynamics and molecular freedom of dimers on plane triangular lattices, J. Math. Phys. 27, 1099 (1986).
doi:10.1063/1.527154

[9] A J Phares, F J Wunderlich, J D Curley, D W Grumbine Jr, Structural ordering of interacting dimers on a square lattice, J. Phys. A: Math. Gen. 26, 6847 (1993).
doi:10.1088/0305-4470/26/23/029

[10] A Ghosh, D Dhar, On the orientational ordering of long rods on a lattice, Eur. Phys. Lett. 78, 20003 (2007).
doi:10.1209/0295-5075/78/20003

[11] D A Matoz-Fernandez, D H Linares, A J Ramirez-Pastor, Determination of the critical exponents for the isotropic-nematic phase transition in a system of long rods on two-dimensional lattices: Universality of the transition, Europhys. Lett. 82, 50007 (2008).
doi:10.1209/0295-5075/82/50007

[12] D A Matoz-Fernandez, D H Linares, A J Ramirez-Pastor, Critical behavior of long linear k-mers on honeycomb lattices, Physica A 387, 6513 (2008).
doi:10.1016/j.physa.2008.08.010

[13] D H Linares, F Romá, A J Ramirez-Pastor, Entropy-driven phase transition in a system of long rods on a square lattice, J. Stat. Mech. P03013 (2008).
doi:10.1088/1742-5468/2008/03/P03013

[14] D A Matoz-Fernandez, D H Linares, A J Ramirez-Pastor, Critical behavior of long straight rigid rods on two-dimensional lattices: Theory and Monte Carlo simulations, J. Chem. Phys. 128, 214902 (2008).
doi:10.1063/1.2927877

[15] T Fischer, R L C Vink, Restricted orientation liquid crystal in two dimensions: Isotropic-nematic transition or liquid-gas one(?), Europhys. Lett. 85, 56003 (2009).
doi:10.1209/0295-5075/85/56003

[16] J M Tavares, B Holder, M M Telo da Gama, Structure and phase diagram of self-assembled rigid rods: Equilibrium polydispersity and nematic ordering in two dimensions, Phys. Rev. E 79, 021505 (2009).
doi:10.1103/PhysRevE.79.021505

[17] H H Wensink, Columnar versus smectic order in systems of charged colloidal rods, J. Chem. Phys. 126, 194901 (2007).
doi:10.1063/1.2730819

[18] K Binder, Applications of the Monte Carlo Method in Statistical Physics. Topics in current Physics, Springer, Berlin (1984).

[19] V Privman, Finite Size Scaling and Numerical Simulation of Statistical Systems, World Scientific, Singapore (1990).

[20] T L Hill, An Introduction to Statistical Thermodynamics, Addison Wesley Publishing Company, Reading, MA (1960).

[21] G Kamieniarz, H W J Blöte, Universal ratio of magnetization moments in two-dimensional Ising models, J. Phys. A: Math. Gen. 26, 201 (1993).
doi:10.1088/0305-4470/26/2/009