[1] H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., C60: Buckminsterfullerene, Nature, 318, 162, (1985).
https://doi.org/10.1038/318162a0

[2] H. W. Kroto, A. W. Allaf, S. P. Balm, C60: Buckminsterfullerene, Chem. Rev., 91, 1213, (1991).
https://doi.org/10.1021/cr00006a005

[3] S. L. Ren et al., Ellipsometric determination of the optical constants of C60 (Buckminster-fullerene) films, Appl. Phys. Lett., 59, 2678, (1991).
https://doi.org/10.1063/1.105907

[4] A. Rosén, B. W ̈astberg, Buckminsterfullerene C60 a surface with curvature and interesting properties, Surf Sci, 269, 1121, (1992).
https://doi.org/10.1016/0039-6028(92)91403-X

[5] S. Schein, M. Sands-Kidner, A geometric principle may guide self-assembly of fullerene cages from clathrin triskelia and from carbon atoms, Biophys. J., 94, 958, (2008).
https://doi.org/10.1529/biophysj.107.110817

[6] F. Wudl, The Chemical Properties of Buckminsterfullerene (C60) and the Birth and Infancy of Fulleroids, Acc. Chem. Res., 25, 157, (1992).
https://doi.org/10.1021/ar00015a009

[7] S. Bosi, et al., Fullerene derivatives: An attractive tool for biological applications, Eur. J Med. Chem., 38, 913, (2003).
https://doi.org/10.1016/j.ejmech.2003.09.005

[8] T. Da Ros, M. Prato, Medicinal chemistry with fullerenes and fullerene derivatives, Chem. Comm., 663, (1999).
https://doi.org/10.1039/a809495k

[9] M. Notarianni, et al., Synthesis and applications of carbon nanomaterials for energy generation and storage, Beilstein J. Nanotech., 7, 149, (2016).
https://doi.org/10.3762/bjnano.7.17

[10] D. Kronholm, J. C. Hummelen, Fullerenebased n-type semiconductors in organic electronics., Material Matters (Milwaukee, WI, United States), 2, 16, (2007).
https://www.sigmaaldrich.com/AR/es/technical-documents/technical-article/materials-science-and-engineering/photovoltaics-and-solar-cells/fullerene-based-n-type

[11] J. C. Hummelen, et al., Preparation and Characterization of Fulleroid and Methanofullerene Derivatives, J. Organic Chem., 60, 532, (1995).
https://doi.org/10.1021/jo00108a012

[12] K. Akaike, et al., Ultraviolet photoelectron spectroscopy and inverse photoemission spectroscopy of [6,6]-phenyl-C61-butyric acidmethy ester in gas and solid phases, J. Appl. Phys., 104, 023710, (2008).
https://doi.org/10.1063/1.2957588

[13] J. H. Pöhls, M. B. Johnson, M. A. White, Origins of ultralow thermal conductivity in bulk [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), Physical Chemistry Chemical Physics, 18, 1185, (2016).
https://doi.org/10.1039/c5cp06575e

[14] J. L. Wu, et al., Near-infrared laser-driven polymer photovoltaic devices and their biomedical applications, Energy Environ. Sci., 4, 3374, (2011).
https://doi.org/10.1039/c1ee01723c

[15] S. Foster, et al., Electron collection as a limit to polymer:PCBM solar cell efficiency: Effect of blend microstructure on carrier mobility and device performance in PTB7:PCBM, Adv. Energy Mater, 4, 1, (2014).
https://doi.org/10.1002/aenm.201400311

[16] J. Guo, et al., Structure, dynamics, and power conversion efficiency correlations in a new lowbandgap polymer: PCBM solar cell, J. Phys. Chem. B, 114, 742, (2010).
https://doi.org/10.1021/jp909135k

[17] C. H. Chiang, C. G. Wu, Bulk heterojunction perovskite-PCBM solar cells with high fill factor, Nat. Photonics, 10, 196, (2016).
https://doi.org/10.1038/nphoton.2016.3

[18] C. Zhang, et al., DFT Study on Methanofullerene Derivative [6,6]-Phenyl C61 Butyric Acid Methyl Ester, Acta Physico - Chimica Sinica, 24, 1353, (2008).
https://doi.org/10.1016/S1872-1508(08)60058-3

[19] J. P. Martínez, M. Sol`a, Open-Circuit Voltage of Organic Photovoltaics: A Time-Dependent and Unrestricted DFT Study in a P3HT/PCBM Complex, J. Phys. Chem. A, 124, 1300, (2020).
https://doi.org/10.1021/acs.jpca.9b10097

[20] N. Van Den Brande, et al., A time dependent DFT study of the efficiency of polymers for organic photovoltaics at the interface with PCBM, RSC Adv., 4, 52658, (2014).
https://doi.org/10.1039/c4ra12053a

[21] Y. Wu, et al., SERS Study of the Mechanism of Plasmon-Driven Hot Electron Transfer between Gold Nanoparticles and PCBM, J. Phys. Chem. C, 123, 29908, (2019).
https://doi.org/10.1021/acs.jpcc.9b10395

[22] M. Stavytska-Barba, et al., Plasmonic enhancement of Raman scattering from the organic solar cell material P3HT/PCBM by triangular silver nanoprisms J. Phys. Chem. C, 115, 20788, (2011).
https://doi.org/10.1021/jp206853u

[23] C. E. Martinez Nuñez, et al., Chemical bonding mechanism in SERS effect of pyridine by CuO nanoparticles, J. Raman Spectroscopy, 50, 1395, (2019).
https://doi.org/10.1002/jrs.5643

[24] C. E. Martinez-Nuñez, et al., Non-resonant enhancement mechanism in SERS effect due to copper oxide quantum dots stabilized in synthetic zeolite F9-NaX, Mater. Chem. Phys., 211, 150, (2018).
https://doi.org/10.1016/j.matchemphys.2017.12.075

[25] R. Hoppe, J. Köhler, SCHLEGEL projections and SCHLEGEL diagrams—new ways to describe and discuss solid state compounds, Zeitschrift fur Kristallographie - New Crystal Structures, 183, 77, (1988).
https://doi.org/10.1524/zkri.1988.183.14.77

[26] M. J. Frisch et al., Gaussian 09, Revision D. 01, Gaussian Inc., Wallingford, CT, USA (2009).
https://gaussian.com/

[27] I. N. Levine, D. H. Busch, H. Shull, Quantum chemistry, Prentice Hall Upper Saddle River, NJ, (2000).
https://lib.ugent.be/catalog/rug01:001382226

[28] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J Chem. Phys., 98, 5648, (1993).
https://doi.org/10.1063/1.464913

[29] P. J. Hay, Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms, J Chem. Phys., 66, 4377, (1977).
https://doi.org/10.1063/1.433731

[30] P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J Chem. Phys., 82, 270, (1985).
https://doi.org/10.1063/1.448799

[31] W. R. Wadt, P. J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J Chem. Phys., 82, 284, (1985).
https://doi.org/10.1063/1.448800

[32] T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, J Comput. Chem., 33, 580, (2012).
https://doi.org/10.1002/jcc.22885

[33] R. S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions, J Chem. Phys., 23, 1833, (1955).
https://doi.org/10.1063/1.1740588

[34] F. L. Hirshfeld, XVII. Spatial Partitioning of Charge Density, Isr. J Chem., 16, 198, (1977).
https://doi.org/10.1002/ijch.197700033

[35] F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta., 44, 129, (1977).
https://doi.org/10.1007/BF00549096

[36] T. Lu, F. Chen, Atomic dipole moment corrected Hirshfeld population method, J Theor. Comput. Chem., 11, 163, (2012).
https://doi.org/10.1142/S0219633612500113

[37] T. Lu, et al., A Multifunctional Wavefunction Analyzer (Multiwfn), Software manual, 7, 1, (2020).
http://sobereva.com/multiwfn/misc/Multiwfn_3.8_dev.pdf

[38] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J Mol. Graph., 14, 33, (1996).
https://doi.org/10.1016/0263-7855(96)00018-5

[39] S. M. Morton, L. Jensen, Understanding the molecule-surface chemical coupling in SERS, J Am. Chem. Soc., 131, 4090, (2009).
https://doi.org/10.1021/ja809143c

[40] A. Becke, The Quantum Theory of Atoms in Molecules-From Solid State to DNA and Drug Design, John Wiley & Sons, 2007.
hhtps://doi.org/10.1002/9783527610709

[41] D. Cremer, E. Kraka, Chemical Bonds without Bonding Electron Density does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond, Angewandte Chemie International Edition in English, 23, 627, (1984).
https://doi.org/10.1002/anie.198406271

[42] C. Gatti, Chemical bonding in crystals: new directions, Zeitschrift f ̈ur Kristallographie- Crystalline Materials, 220, 399, (2005).
https://doi.org/10.1524/zkri.220.5.399.65073

[43] H. Yang, P. Boulet, M. C. Record, A rapid method for analyzing the chemical bond from energy densities calculations at the bond critical point, Computational and Theor. Chem., 1178, 112784, (2020).
https://doi.org/10.1016/j.comptc.2020.112784

[44] R. Pino-Rios, et al., Orbital-weighted dual descriptor for the study of local reactivity of systems with (quasi-) degenerate states, J. Phys. Chem. A, 123, 10556, (2019).
https://doi.org/10.1021/acs.jpca.9b07516

[45] J. Menéndez, J. B. Page, Vibrational spectroscopy of C60, Light Scattering in Solids VIII, 76, 27, (2006).
https://doi.org/10.1007/bfb0084240

[46] Arizona State University, The vibrational modes of buckminsterfullerene C60.
https://www.public.asu.edu/~cosmen/C60_vibrations/mode_assignments.htm

[47] D. E. Weeks, W. G. Harter, Rotation-vibration spectra of icosahedral molecules. II. Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene, J Chem. Phys., 90, 4744, (1989).
https://doi.org/10.1063/1.456571

[48] H. Kuzmany, et al., Raman spectroscopy of fullerenes and fullerene-nanotube composites, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362, 2375, (2004).
https://doi.org/10.1098/rsta.2004.1446

[49] V. Schettino, et al., The vibrational spectrum of fullerene C60, J. Phys. Chem. A, 105, 11192, (2001).
https://doi.org/10.1021/jp012874t

[50] S. M. Morton, L. Jensen, Understanding the molecule surface chemical coupling in SERS, J. Am. Chem. Soc., 131, 4090, (2009).
https://doi.org/10.1021/ja809143c

[51] L. Zhao, L. Jensen, G. C. Schatz, Pyridine-Ag20 cluster: A model system for studying surface-enhanced Raman scattering, J Am. Chem. Soc., 128, 2911, (2006).
https://doi.org/10.1021/ja0556326