[1] C Rovelli, Quantum Gravity, Cambridge University Press, Cambridge (UK) (2004), Pag. 480.

[2] T Thiemann, Modern canonical quantum general relativity, Cambridge University Press, Cambridge (UK) (2007), Pag. 819.

[3] A Ashtekar, J Lewandowski, Background independent quantum gravity: A status report, Class. Quant. Grav. 21, R53 (2004).
http://dx.doi.org/10.1088/0264-9381/21/15/R01

[4] J Engle, R Pereira, C Rovelli, The loop-quantum-gravity vertex-amplitude, Phys. Rev. Lett. 99, 161301 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.161301

[5] J Engle, E Livine, R Pereira, C Rovelli, LQG vertex with finite Immirzi parameter, Nucl. Phys. B 799, 136 (2008).
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018

[6] L Freidel, K Krasnov, A new spin foam model for 4d gravity, Class. Quant. Grav. 25, 125018 (2008).
http://dx.doi.org/10.1088/0264-9381/25/12/125018

[7] C Rovelli, Zakopane lectures on loop gravity, arXiv:1102.3660 (2011).

[8] A Perez, The spin foam approach to quantum gravity, Liv. Rev. Rel. (in press).

[9] J C Baez, An introduction to spin foam models of quantum gravity and bf theory, Lect. Notes Phys. 543, 25 (2000).
http://dx.doi.org/10.1007/3-540-46552-9_2

[10] R Oeckl, Discrete gauge theory: From lattices to TQFT, Imperial College Press, London (UK) (2005), Pag. 202.

[11] R Oeckl, H Pfeiffer, The dual of pure non-Abelian lattice gauge theory as a spin foam model, Nucl. Phys. B 598, 400 (2001).
http://dx.doi.org/10.1016/S0550-3213(00)00770-7

[12] F Girelli, R Oeckl, A Perez, Spin foam diagrammatics and topological invariance, Class. Quant. Grav. 19, 1093 (2002).
http://dx.doi.org/10.1088/0264-9381/19/6/305

[13] D Yetter L Crane, A Categorical construction of 4-D topological quantum field theories, In: Quantum Topology, Eds. L Kaufmann, R Baadhio, Pag. 120, World Scientific, Singapore (1993).

[14] D N Yetter, L Crane, L Kauffman, State-sum invariants of 4-manifolds, J. Knot Theor. Ramif. 6, 177 (1997).
http://dx.doi.org/10.1142/S0218216597000145

[15] J C Baez, A Perez, Quantization of strings and branes coupled to BF theory, Adv. Theor. Math. Phys. 11, 3 (2007).

[16] W J Fairbairn, A Perez, Extended matter coupled to BF theory, Phys. Rev. D, 78, 024013 (2008).
http://dx.doi.org/10.1103/PhysRevD.78.024013

[17] M Montesinos, A Perez, Two-dimensional topological field theories coupled to four-dimensional BF theory, Phys. Rev. D 77, 104020 (2008).
http://dx.doi.org/10.1103/PhysRevD.77.104020

[18] G 't Hooft, A locally finite model for gravity, Found. Phys. 38, 733 (2008).
http://dx.doi.org/10.1007/s10701-008-9231-3

[19] L Freidel, J Kowalski-Glikman, A Starodubtsev, Particles as Wilson lines of gravitational field, Phys. Rev. D 74, 084002 (2006).
http://dx.doi.org/10.1103/PhysRevD.74.084002

[20] E R Livine, A Perez, C Rovelli, 2D manifold-independent spinfoam theory, Class. Quant. Grav. 20, 4425 (2003).
http://dx.doi.org/10.1088/0264-9381/20/20/308

[21] R Jackiw, Liouville field theory: A two-dimensional model for gravity? In: Quantum theory of gravity, Eds. S M Christensen, B S DeWitt, Pag. 403, Adam Hilger Ltd., Bristol (1984).

[22] C Teitelboim, The Hamiltonian structure of two-dimensional space-time and its relation with the conformal anomaly, In: Quantum theory of gravity, Eds. S M Christensen, B S DeWitt, Pag. 403, Adam Hilger Ltd., Bristol (1984).

[23] C P Constantinidis, O Piguet, A Perez, Quantization of the Jackiw-Teitelboim model, Phys. Rev. D 79, 084007 (2009).
http://dx.doi.org/10.1103/PhysRevD.79.084007

[24] D Oriti, C Rovelli, S Speziale, Spinfoam 2d quantum gravity and discrete bundles, Class. Quant. Grav. 22, 85 (2005).
http://dx.doi.org/10.1088/0264-9381/22/1/006

[25] S Carlip, Quantum gravity in 2+1 dimensions, Cambridge University Press, Cambridge (UK) (1998), Pag. 276.

[26] T Regge, G Ponzano, Semiclassical limit of Racah coeficients, In: Spectroscopy and Group Theoretical Methods in Physics, Eds. F Block et al., North-Holland, Amsterdam (1968).

[27] J W Barrett, I Naish-Guzman, The Ponzano-Regge model, Class. Quant. Grav. 26, 155014 (2009).
http://dx.doi.org/10.1088/0264-9381/26/15/155014

[28] K Noui, A Perez, Three dimensional loop quantum gravity: Physical scalar product and spin foam models, Class. Quant. Grav. 22, 1739 (2005).
http://dx.doi.org/10.1088/0264-9381/22/9/017

[29] L Freidel, D Louapre, Diffeomorphisms and spin foam models, Nucl. Phys. B 662, 279 (2003).
http://dx.doi.org/10.1016/S0550-3213(03)00306-7

[30] V Bonzom, M Smerlak, Bubble divergences from cellular cohomology, Lett. Math. Phys. 93, 295 (2010).
http://dx.doi.org/10.1007/s11005-010-0414-4

[31] V Bonzom, M Smerlak, Bubble divergences from twisted cohomology, arXiv:1008.1476 (2010).

[32] V Bonzom, M Smerlak, Bubble divergences: sorting out topology from cell structure, Ann. Henri Poincare 13, 185 (2012).
http://dx.doi.org/10.1007/s00023-011-0127-y

[33] O Y Viro, V G Turaev, Statesum invariants of 3-manifolds and quantum 6j-symbols, Topology 31, 865 (1992).
http://dx.doi.org/10.1016/0040-9383(92)90015-A

[34] J W Barrett, J M Garcia-Islas, J F Martins, Observables in the Turaev-Viro and Crane-Yetter models, J. Math. Phys. 48, 093508 (2007).
http://dx.doi.org/10.1063/1.2759440

[35] K Noui, A Perez, Observability and geometry in three dimensional quantum gravity, In: Quantum theory and symmetries, Eds. P C Argyres et al., Pag. 641, World Scientific, Singapore (2004).

[36] K Noui, A Perez, Three dimensional loop quantum gravity: Coupling to point particles, Class. Quant. Grav. 22, 4489 (2005).
http://dx.doi.org/10.1088/0264-9381/22/21/005

[37] L Freidel, D Louapre, Ponzano-Regge model revisited. I: Gauge fixing, observables and interacting spinning particles, Class. Quant. Grav. 21, 5685 (2004).
http://dx.doi.org/10.1088/0264-9381/21/24/002

[38] L Freidel, E R Livine, Ponzano-Regge model revisited. III: Feynman diagrams and effective field theory, Class. Quant. Grav. 23, 2021 (2006).
http://dx.doi.org/10.1088/0264-9381/23/6/012

[39] L Freidel, E R Livine, Effective 3d quantum gravity and non-commutative quantum field theory, Phys. Rev. Lett. 96, 221301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.221301

[40] W J Fairbairn, Fermions in three-dimensional spinfoam quantum gravity, Gen. Rel. Grav. 39, 427 (2007).
http://dx.doi.org/10.1007/s10714-006-0395-x

[41] R J Dowdall, W J Fairbairn, Observables in 3d spinfoam quantum gravity with fermions, Gen. Rel. Grav. 43, 1263 (2011).
http://dx.doi.org/10.1007/s10714-010-1107-0

[42] S Speziale, Coupling gauge theory to spinfoam 3d quantum gravity, Class. Quant. Grav. 24, 5139 (2007).
http://dx.doi.org/10.1088/0264-9381/24/20/014

[43] W J Fairbairn, E R Livine, 3d spinfoam quantum gravity: Matter as a phase of the group field theory, Class. Quant. Grav. 24, 5277 (2007).
http://dx.doi.org/10.1088/0264-9381/24/20/021

[44] E R Livine, R Oeckl, Three-dimensional quantum supergravity and supersymmetric spin foam models, Adv. Theor. Math. Phys. 7, 951 (2004).

[45] V Baccetti, E R Livine, J P Ryan, The particle interpretation of N = 1 supersymmetric spin foams, Class. Quant. Grav. 27, 225022 (2010).
http://dx.doi.org/10.1088/0264-9381/27/22/225022

[46] V Bonzom, E R Livine, Yet another recursion relation for the 6j-symbol, arXiv:1103.3415 (2011).

[47] M Dupuis, E R Livine, The 6j-symbol: Recursion, correlations and asymptotics, Class. Quant. Grav. 27, 135003 (2010).
http://dx.doi.org/10.1088/0264-9381/27/13/135003

[48] V Bonzom, E R Livine, S Speziale, Recurrence relations for spin foam vertices, Class. Quant. Grav. 27, 125002 (2010).
http://dx.doi.org/10.1088/0264-9381/27/12/125002

[49] E R Livine, S Speziale, A new spinfoam vertex for quantum gravity, Phys. Rev. D 76, 084028 (2007).
http://dx.doi.org/10.1103/PhysRevD.76.084028

[50] T Thiemann, Coherent states on graphs, Prepared for 9th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (MG 9), Rome (Italy), 2-9 July (2000).

[51] T Thiemann, Gauge field theory coherent states (gcs). i: General properties, Class. Quant. Grav. 18, 2025 (2001).
http://dx.doi.org/10.1088/0264-9381/18/11/304

[52] H Sahlmann, T Thiemann, O Winkler, Coherent states for canonical quantum general relativity and the infinite tensor product extension, Nucl. Phys. B 606, 401 (2001).
http://dx.doi.org/10.1016/S0550-3213(01)00226-7

[53] T Thiemann, O Winkler, Gauge field theory coherent states (GCS) 2. Peakedness properties, Class. Quant. Grav. 18, 2561 (2001).
http://dx.doi.org/10.1088/0264-9381/18/14/301

[54] T Thiemann, O Winkler, Gauge field theory coherent states (GCS) 3. Ehrenfest theorems, Class. Quant. Grav. 18, 4629 (2001).
http://dx.doi.org/10.1088/0264-9381/18/21/315

[55] T Thiemann, O Winkler, Gauge field theory coherent states (GCS) 4. Infinite tensor product and thermodynamical limit, Class. Quant. Grav. 18, 4997 (2001).
http://dx.doi.org/10.1088/0264-9381/18/23/302

[56] T Thiemann, Complexifier coherent states for quantum general relativity, Class. Quant. Grav. 23, 2063 (2006).
http://dx.doi.org/10.1088/0264-9381/23/6/013

[57] B Bahr, T Thiemann, Gauge-invariant coherent states for Loop Quantum Gravity. I. Abelian gauge groups, Class. Quant. Grav. 26, 045011 (2009).
http://dx.doi.org/10.1088/0264-9381/26/4/045011

[58] B Bahr, T Thiemann, Gauge-invariant coherent states for loop quantum gravity. II. Non-Abelian gauge groups, Class. Quant. Grav. 26, 045012 (2009).
http://dx.doi.org/10.1088/0264-9381/26/4/045012

[59] C Flori, T Thiemann, Semiclassical analysis of the Loop Quantum Gravity volume operator. I. Flux Coherent States, arXiv:0812.1537 (2008).

[60] E Bianchi, E Magliaro, C Perini, Coherent spin-networks, Phys. Rev. D 82, 024012 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.024012

[61] F Conrady, L Freidel, Quantum geometry from phase space reduction, J. Math. Phys. 50, 123510 (2009).
http://dx.doi.org/10.1063/1.3257109

[62] E Buffenoir, P Roche, Harmonic analysis on the quantum Lorentz group, Commun. Math. Phys. 207, 499 (1999).
http://dx.doi.org/10.1007/s002200050736

[63] W Ruhl, The Lorentz group and harmonic analysis, W. A. Benjamin Inc., New York (1970).

[64] I M Gelfand, Generalized Functions, Academic Press, New York (1966), Vol. 5.

[65] I M Gelfand, R A Minlos, Z Ya Shapiro, Representations of the rotation and Lorentz groups and their applications, Pergamon Press, Oxford (1963).

[66] J W Barrett, L Crane, Relativistic spin networks and quantum gravity, J. Math. Phys. 39, 3296 (1998).
http://dx.doi.org/10.1063/1.532254

[67] Y Ding, C Rovelli, The volume operator in covariant quantum gravity, Class. Quant. Grav. 27, 165003 (2010).
http://dx.doi.org/10.1088/0264-9381/27/16/165003

[68] Y Ding, M Han, C Rovelli, Generalized Spinfoams, Phys. Rev. D 83, 124020 (2011).
http://dx.doi.org/10.1103/PhysRevD.83.124020

[69] S Alexandrov, The new vertices and canonical quantization, Phys. Rev. D 82, 024024 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.024024

[70] C Rovelli, S Speziale, Lorentz covariance of loop quantum gravity, Phys. Rev. D 83, 104029 (2011).
http://dx.doi.org/10.1103/PhysRevD.83.104029

[71] W M Wieland, Twistorial phase space for complex Ashtekar variables, Class. Quant. Grav. 29, 045007 (2012).
http://dx.doi.org/10.1088/0264-9381/29/4/045007

[72] M Dupuis, L Freidel, E R Livine, S Speziale, Holomorphic Lorentzian simplicity constraints, arXiv:1107.5274 (2011).

[73] E R Livine, S Speziale, J Tambornino, Twistor Networks and Covariant Twisted Geometries, Phys. Rev. D 85, 064002 (2012).
http://dx.doi.org/10.1103/PhysRevD.85.064002

[74] J C Baez, Spin foam models, Class. Quant. Grav. 15, 1827 (1998).
http://dx.doi.org/10.1088/0264-9381/15/7/004

[75] M Bojowald, A Perez, Spin foam quantization and anomalies, Gen. Rel. Grav. 42, 877 (2010).
http://dx.doi.org/10.1007/s10714-009-0892-9

[76] B Bahr, F Hellmann, W Kaminski, M Kisielowski, J Lewandowski, Operator spin foam models, Class. Quant. Grav. 28, 105003 (2011).
http://dx.doi.org/10.1088/0264-9381/28/10/105003

[77] W Kaminski, M Kisielowski, J Lewandowski, The EPRL intertwiners and corrected partition function, Class. Quant. Grav. 27, 165020 (2010).
http://dx.doi.org/10.1088/0264-9381/27/16/165020

[78] E Alesci, E Bianchi, E Magliaro, C Perini, Asymptotics of LQG fusion coefficients, Class. Quant. Grav. 27, 095016 (2010).
http://dx.doi.org/10.1088/0264-9381/27/9/095016

[79] E R. Livine, S Speziale, Consistently solving the simplicity constraints for spinfoam quantum gravity, Europhys. Lett. 81, 50004 (2008).
http://dx.doi.org/10.1209/0295-5075/81/50004

[80] J W Barrett, R J Dowdall, W J Fairbairn, H Gomes, F Hellmann, Asymptotic analysis of the EPRL four-simplex amplitude, J. Math. Phys. 50, 112504 (2009).
http://dx.doi.org/10.1063/1.3244218

[81] S Alexandrov, Simplicity and closure constraints in spin foam models of gravity, Phys. Rev. D 78, 044033 (2008).
http://dx.doi.org/10.1103/PhysRevD.78.044033

[82] S Alexandrov, Spin foam model from canonical quantization, Phys. Rev. D 77, 024009 (2008).
http://dx.doi.org/10.1103/PhysRevD.77.024009

[83] V Bonzom, Spin foam models for quantum gravity from lattice path integrals, Phys. Rev. D 80, 064028 (2009).
http://dx.doi.org/10.1103/PhysRevD.80.064028

[84] V Bonzom, From lattice BF gauge theory to area-angle Regge calculus, Class. Quant. Grav. 26, 155020 (2009).
http://dx.doi.org/10.1088/0264-9381/26/15/155020

[85] V Bonzom, E R Livine, A Lagrangian approach to the Barrett-Crane spin foam model, Phys. Rev. D 79, 064034 (2009).
http://dx.doi.org/10.1103/PhysRevD.79.064034

[86] M Han, T Thiemann, Commuting simplicity and closure constraints for 4D spin foam models, arXiv:1010.5444 (2010).

[87] A Baratin, C Flori, T Thiemann, The Holst spin foam model via cubulations, arXiv:0812.4055 (2008).

[88] M Dupuis, E R Livine, Revisiting the simplicity constraints and coherent intertwiners, Class. Quant. Grav. 28, 085001 (2011).
http://dx.doi.org/10.1088/0264-9381/28/8/085001

[89] L Freidel, E R Livine, U(N) Coherent States for Loop Quantum Gravity, J. Math. Phys. 52, 052502 (2011).
http://dx.doi.org/10.1063/1.3587121

[90] L Freidel, E R Livine, The fine structure of SU(2) intertwiners from U(N) representations, J. Math. Phys. 51, 082502 (2010).
http://dx.doi.org/10.1063/1.3473786

[91] E F Borja, L Freidel, I Garay, E R Livine, U(N) tools for loop quantum gravity: The return of the spinor, Class. Quant. Grav. 28, 055005 (2011).
http://dx.doi.org/10.1088/0264-9381/28/5/055005

[92] E R Livine, J Tambornino, Spinor representation for loop quantum gravity, J. Math. Phys. 53, 012503 (2012).
http://dx.doi.org/10.1063/1.3675465

[93] B Dittrich, J P Ryan, Simplicity in simplicial phase space, Phys. Rev. D 82, 064026 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.064026

[94] J Engle, R Pereira, Regularization and finiteness of the Lorentzian LQG vertices, Phys. Rev. D 79, 084034 (2009).
http://dx.doi.org/10.1103/PhysRevD.79.084034

[95] L Liu, M Montesinos, A Perez, A topological limit of gravity admitting an SU(2) connection formulation, Phys. Rev. D 81, 064033 (2010).
http://dx.doi.org/10.1103/PhysRevD.81.064033

[96] Y Ding, C Rovelli, Physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory, Class. Quant. Grav. 27, 205003 (2010).
http://dx.doi.org/10.1088/0264-9381/27/20/205003

[97] W Kaminski, J Lewandowski, T Pawlowski, Quantum constraints, Dirac observables and evolution: group averaging versus Schroedinger picture in LQC, Class. Quant. Grav. 26, 245016 (2009).
http://dx.doi.org/10.1088/0264-9381/26/24/245016

[98] W Kaminski, M Kisielowski, J Lewandowski, Spin-foams for all loop quantum gravity, Class. Quant. Grav. 27, 095006 (2010).
http://dx.doi.org/10.1088/0264-9381/27/9/095006

[99] L Freidel, E R Livine, Spin networks for non-compact groups, J. Math. Phys. 44, 1322 (2003).
http://dx.doi.org/10.1063/1.1521522

[100] S Alexandrov, E R Livine, SU(2) loop quantum gravity seen from covariant theory, Phys. Rev. D 67, 044009 (2003).
http://dx.doi.org/10.1103/PhysRevD.67.044009

[101] E R Livine, Projected spin networks for Lorentz connection: Linking spin foams and loop gravity, Class. Quant. Grav. 19, 5525 (2002).
http://dx.doi.org/10.1088/0264-9381/19/21/316

[102] S Alexandrov, E Buffenoir, P Roche, Plebanski theory and covariant canonical formulation, Class. Quant. Grav. 24, 2809 (2007).
http://dx.doi.org/10.1088/0264-9381/24/11/003

[103] S Alexandrov, Reality conditions for Ashtekar gravity from Lorentz- covariant formulation, Class. Quant. Grav. 23, 1837 (2006).
http://dx.doi.org/10.1088/0264-9381/23/6/002

[104] S Alexandrov, Hilbert space structure of covariant loop quantum gravity, Phys. Rev. D 66, 024028 (2002).
http://dx.doi.org/10.1103/PhysRevD.66.024028

[105] S Alexandrov, Choice of connection in loop quantum gravity, Phys. Rev. D 65, 024011 (2002).
http://dx.doi.org/10.1103/PhysRevD.65.024011

[106] S Alexandrov, SO(4,C)-covariant Ashtekar-Barbero gravity and the Immirzi parameter, Class. Quant. Grav. 17, 4255 (2000).
http://dx.doi.org/10.1088/0264-9381/17/20/307

[107] S Alexandrov, I Grigentch, D Vassilevich, SU(2)-invariant reduction of the 3+1 dimensional Ashtekar's gravity, Class. Quant. Grav. 15, 573 (1998).
http://dx.doi.org/10.1088/0264-9381/15/3/009

[108] M Dupuis, E R Livine, Lifting SU(2) spin networks to projected spin networks, Phys. Rev. D 82, 064044 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.064044

[109] B Bahr, On knottings in the physical Hilbert space of LQG as given by the EPRL model, Class. Quant. Grav. 28, 045002 (2011).
http://dx.doi.org/10.1088/0264-9381/28/4/045002

[110] E Buffenoir, M Henneaux, K Noui, Ph Roche, Hamiltonian analysis of Plebanski theory, Class. Quant. Grav. 21, 5203 (2004).
http://dx.doi.org/10.1088/0264-9381/21/22/012

[111] J Engle, M Han, T Thiemann, Canonical path integral measures for Holst and Plebanski gravity. I. Reduced Phase Space Derivation, Class. Quant. Grav. 27, 245014 (2010).
http://dx.doi.org/10.1088/0264-9381/27/24/245014

[112] M Han, Canonical path-integral measures for Holst and Plebanski gravity. II. Gauge invariance and physical inner product, Class. Quant. Grav. 27, 245015 (2010).
http://dx.doi.org/10.1088/0264-9381/27/24/245015

[113] E Bianchi, D Regoli, C Rovelli, Face amplitude of spinfoam quantum gravity, Class. Quant. Grav. 27, 185009 (2010).
http://dx.doi.org/10.1088/0264-9381/27/18/185009

[114] K Noui, A Perez, Three dimensional loop quantum gravity: Physical scalar product and spin foam models, Class. Quant. Grav. 22, 1739 (2005).
http://dx.doi.org/10.1088/0264-9381/22/9/017

[115] V Bonzom, L Freidel, The Hamiltonian constraint in 3d Riemannian loop quantum gravity, Class. Quant. Grav. 28, 195006 (2011).
http://dx.doi.org/10.1088/0264-9381/28/19/195006

[116] V Bonzom, A taste of Hamiltonian constraint in spin foam models, arXiv:1101.1615 (2011).

[117] B Dittrich, S Speziale, Area-angle variables for general relativity, New J. Phys. 10, 083006 (2008).
http://dx.doi.org/10.1088/1367-2630/10/8/083006

[118] E Alesci, K Noui, F Sardelli, Spin-foam models and the physical scalar product, Phys. Rev. D 78, 104009 (2008).
http://dx.doi.org/10.1103/PhysRevD.78.104009

[119] E R Livine, D Oriti, J P Ryan, Effective Hamiltonian constraint from group field theory, Class. Quant. Grav. 28, 245010 (2011).
http://dx.doi.org/10.1088/0264-9381/28/24/245010

[120] M Han, T Thiemann, On the relation between operator constraint, master constraint, reduced phase space, and path integral quantisation, Class. Quant. Grav. 27, 225019 (2010).
http://dx.doi.org/10.1088/0264-9381/27/22/225019

[121] M Han, T Thiemann, On the relation between rigging inner product and master constraint direct integral decomposition, J. Math. Phys. 51, 092501 (2010).
http://dx.doi.org/10.1063/1.3486359

[122] M Han, A path-integral for the master constraint of loop quantum gravity, Class. Quant. Grav. 27, 215009 (2010).
http://dx.doi.org/10.1088/0264-9381/27/21/215009

[123] B Dittrich, P A Hohn, From covariant to canonical formulations of discrete gravity, Class. Quant. Grav. 27, 155001 (2010).
http://dx.doi.org/10.1088/0264-9381/27/15/155001

[124] F Conrady, J Hnybida, Unitary irreducible representations of SL(2,C) in discrete and continuous SU(1,1) bases, J. Math. Phys. 52, 012501 (2011).
http://dx.doi.org/10.1063/1.3533393

[125] F Conrady, Spin foams with timelike surfaces, Class. Quant. Grav. 27, 155014 (2010).
http://dx.doi.org/10.1088/0264-9381/27/15/155014

[126] F Conrady, J Hnybida, A spin foam model for general Lorentzian 4-geometries, Class. Quant. Grav. 27, 185011 (2010).
http://dx.doi.org/10.1088/0264-9381/27/18/185011

[127] A Perez, C Rovelli, 3+1 spinfoam model of quantum gravity with spacelike and timelike components, Phys. Rev. D 64, 064002 (2001).
http://dx.doi.org/10.1103/PhysRevD.64.064002

[128] D Oriti, H Pfeiffer, A spin foam model for pure gauge theory coupled to quantum gravity, Phys. Rev. D 66, 124010 (2002).
http://dx.doi.org/10.1103/PhysRevD.66.124010

[129] M Han, C Rovelli, Spinfoam fermions: PCT symmetry, Dirac determinant, and correlation functions, arXiv:1101.3264 (2011).

[130] E Bianchi et al., Spinfoam fermions, arXiv:1012.4719 (2010).

[131] S Alexander, A Marciano, R A Tacchi, Towards a Spin-foam unification of gravity, Yang-Mills interactions and matter fields, arXiv:1105.3480 (2011).

[132] J W Barrett, L Crane, A lorentzian signature model for quantum general relativity, Class. Quant. Grav. 17, 3101 (2000).
http://dx.doi.org/10.1088/0264-9381/17/16/302

[133] K Noui, P Roche, Cosmological deformation of Lorentzian spin foam models, Class. Quant. Grav. 20, 3175 (2003).
http://dx.doi.org/10.1088/0264-9381/20/14/318

[134] Y Ding, M Han, On the asymptotics of quantum group spinfoam model, arXiv:1103.1597 (2011).

[135] M Han, 4-dimensional spin-foam model with quantum Lorentz group, J. Math. Phys. 52, 072501 (2011).
http://dx.doi.org/10.1063/1.3606592

[136] W J Fairbairn, C Meusburger, Quantum deformation of two four-dimensional spin foam models, J. Math. Phys. 53, 022501 (2012).
http://dx.doi.org/10.1063/1.3675898

[137] M Han, Cosmological constant in LQG vertex amplitude, arXiv:1105.2212 (2011).

[138] E Bianchi, T Krajewski, C Rovelli, F Vidotto, Cosmological constant in spinfoam cosmology, Phys. Rev. D 83, 104015 (2011).
http://dx.doi.org/10.1103/PhysRevD.83.104015

[139] F Vidotto, Spinfoam Cosmology: quantum cosmology from the full theory, arXiv:1011.4705 (2010).

[140] A Henderson, C Rovelli, F Vidotto, E Wilson-Ewing, Local spinfoam expansion in loop quantum cosmology, Class. Quant. Grav. 28, 025003 (2011).
http://dx.doi.org/10.1088/0264-9381/28/2/025003

[141] E Bianchi, C Rovelli, F Vidotto, Towards spinfoam cosmology, Phys. Rev. D 82, 084035 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.084035

[142] C Rovelli, F Vidotto, On the spinfoam expansion in cosmology, Class. Quant. Grav. 27, 145005 (2010).
http://dx.doi.org/10.1088/0264-9381/27/14/145005

[143] C Rovelli, F Vidotto, Stepping out of Homogeneity in Loop Quantum Cosmology, Class. Quant. Grav. 25, 225024 (2008).
http://dx.doi.org/10.1088/0264-9381/25/22/225024

[144] M Bojowald, Loop quantum cosmology, Liv. Rev. Rel. 8, 11 (2005).

[145] A Ashtekar, M Campiglia, A Henderson, Path integrals and the WKB approximation in loop quantum cosmology, Phys. Rev. D 82, 124043 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.124043

[146] A Ashtekar, M Campiglia, A Henderson, Casting loop quantum cosmology in the spin foam paradigm, Class. Quant. Grav. 27, 135020 (2010).
http://dx.doi.org/10.1088/0264-9381/27/13/135020

[147] A Ashtekar, Ml Campiglia, A Henderson, Loop quantum cosmology and spin foams, Phys. Lett. B 681, 347 (2009).
http://dx.doi.org/10.1016/j.physletb.2009.10.042

[148] M Campiglia, A Henderson, W Nelson, Vertex expansion for the Bianchi I model, Phys. Rev. D 82, 064036 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.064036

[149] K Krasnov, Renormalizable non-metric quantum gravity? arXiv:hep-th/0611182 (2006).

[150] K Krasnov, On deformations of Ashtekar's constraint algebra, Phys. Rev. Lett. 100, 081102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.081102

[151] K Krasnov, Plebanski gravity without the simplicity constraints, Class. Quant. Grav. 26, 055002 (2009).
http://dx.doi.org/10.1088/0264-9381/26/5/055002

[152] K Krasnov, Gravity as BF theory plus potential, Int. J. Mod. Phys. A 24, 2776 (2009).
http://dx.doi.org/10.1142/S0217751X09046151

[153] K Krasnov, Metric Lagrangians with two propagating degrees of freedom, Europhys. Lett. 89, 30002 (2010).
http://dx.doi.org/10.1209/0295-5075/89/30002

[154] S Speziale, Bi-metric theory of gravity from the non-chiral Plebanski action, Phys. Rev. D 82, 064003 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.064003

[155] M P Reisenberger, C Rovelli, Spacetime as a feynman diagram: the connection formulation, Class. Quant. Grav. 18, 121 (2001).
http://dx.doi.org/10.1088/0264-9381/18/1/308

[156] M P Reisenberger, C Rovelli, Spin foams as feynman diagrams, In: 2001, a relativistic spacetime odyssey. Eds. I Ciufolini, D Dominici, L Lusanna, Pag. 431, World Scientific, Singapore (2003).

[157] J Magnen, K Noui, V Rivasseau, M Smerlak, Scaling behaviour of three-dimensional group field theory, Class. Quant. Grav. 26, 185012 (2009).
http://dx.doi.org/10.1088/0264-9381/26/18/185012

[158] L Freidel, D Louapre, Non-perturbative summation over 3D discrete topologies, Phys. Rev. D 68, 104004 (2003).
http://dx.doi.org/10.1103/PhysRevD.68.104004

[159] R Gurau, Colored Group Field Theory, Commun. Math. Phys. 304, 69 (2011).
http://dx.doi.org/10.1007/s00220-011-1226-9

[160] R Gurau, The 1/N expansion of colored tensor models, Ann. Henri Poincare 12, 829 (2011).
http://dx.doi.org/10.1007/s00023-011-0101-8

[161] R Gurau, A generalization of the Virasoro algebra to arbitrary dimensions, Nucl. Phys. B 852, 592 (2011).
http://dx.doi.org/10.1016/j.nuclphysb.2011.07.009

[162] V Bonzom, R Gurau, A Riello, V Rivasseau, Critical behavior of colored tensor models in the large N limit, Nucl. Phys. B 853, 174 (2011).
http://dx.doi.org/10.1016/j.nuclphysb.2011.07.022

[163] R Gurau, The complete 1/N expansion of colored tensor models in arbitrary dimension, Ann. Henri Poincare 13, 399 (2011).
http://dx.doi.org/10.1007/s00023-011-0118-z

[164] R Gurau, V Rivasseau, The 1/N expansion of colored tensor models in arbitrary dimension, Europhys. Lett 95, 50004 (2011).
http://dx.doi.org/10.1209/0295-5075/95/50004

[165] J P Ryan, Tensor models and embedded Riemann surfaces, Phys. Rev. D 85, 024010 (2012).
http://dx.doi.org/10.1103/PhysRevD.85.024010

[166] J W Barrett, R J Dowdall, W J Fairbairn, F Hellmann, R Pereira, Lorentzian spin foam amplitudes: graphical calculus and asymptotics, Class. Quant. Grav. 27, 165009 (2010).
http://dx.doi.org/10.1088/0264-9381/27/16/165009

[167] J W Barrett, R J Dowdall, W J Fairbairn, H Gomes, F Hellmann, A Summary of the asymptotic analysis for the EPRL amplitude, In: AIP Conf. Proc. 1196, Pag. 36, (2009).

[168] J W Barrett, W J Fairbairn, F Hellmann, Quantum gravity asymptotics from the SU(2) 15j symbol, Int. J. Mod. Phys. A 25, 2897 (2010).
http://dx.doi.org/10.1142/S0217751X10049281

[169] J W Barrett et al., Asymptotics of 4d spin foam models, Gen. Relat. Gravit. 43, 2421 (2011).
http://dx.doi.org/10.1007/s10714-010-0983-7

[170] F Conrady, L Freidel, On the semiclassical limit of 4d spin foam models, Phys. Rev. D 78, 104023 (2008).
http://dx.doi.org/10.1103/PhysRevD.78.104023

[171] F Conrady, L Freidel, Path integral representation of spin foam models of 4d gravity, Class. Quant. Grav. 25, 245010 (2008).
http://dx.doi.org/10.1088/0264-9381/25/24/245010

[172] J W Barrett, Ch M Steele, Asymptotics of relativistic spin networks, Class. Quant. Grav. 20, 1341 (2003).
http://dx.doi.org/10.1088/0264-9381/20/7/307

[173] J W Barrett, R M Williams, The asymptotics of an amplitude for the 4-simplex, Adv. Theor. Math. Phys. 3, 209 (1999).

[174] M Han, M Zhang, Asymptotics of spinfoam amplitude on simplicial manifold: Euclidean theory, arXiv:1109.0500 (2011).

[175] M Han, M Zhang, Asymptotics of spinfoam amplitude on simplicial manifold: Lorentzian theory, arXiv:1109.0499 (2011).

[176] C Rovelli, Graviton propagator from background-independent quantum gravity, Phys. Rev. Lett. 97, 151301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.151301

[177] R Oeckl, Affine holomorphic quantization, arXiv:1104.5527 (2011).

[178] R Oeckl, Observables in the general boundary formulation, In: Quantum field theory and gravity, Eds. F Finster et al., Pag. 137, Birkh"auser, Basel, (2012).

[179] R Oeckl, Holomorphic quantization of linear field theory in the general boundary formulation, arXiv:1009.5615 (2010).

[180] D Colosi, Robert Oeckl, On unitary evolution in quantum field theory in curved spacetime, Open Nucl. Part. Phys. J. 4, 13 (2011).
http://dx.doi.org/10.2174/1874415X01104010013

[181] D Colosi, Robert Oeckl, States and amplitudes for finite regions in a two-dimensional Euclidean quantum field theory, J. Geom. Phys. 59, 764 (2009).
http://dx.doi.org/10.1016/j.geomphys.2009.03.004

[182] D Colosi, R Oeckl, Spatially asymptotic S-matrix from general boundary formulation, Phys. Rev. D 78, 025020 (2008).
http://dx.doi.org/10.1103/PhysRevD.78.025020

[183] D Colosi, R Oeckl, S-matrix at spatial infinity, Phys. Lett. B 665, 310 (2008).
http://dx.doi.org/10.1016/j.physletb.2008.06.011

[184] R Oeckl, Probabilites in the general boundary formulation, J. Phys. Conf. Ser. 67, 012049 (2007).

[185] E Alesci, C Rovelli, The complete LQG propagator. II. Asymptotic behavior of the vertex, Phys. Rev. D 77, 044024 (2008).
http://dx.doi.org/10.1103/PhysRevD.77.044024

[186] E Alesci, C Rovelli, The complete LQG propagator. I. Difficulties with the Barrett-Crane vertex, Phys. Rev. D 76, 104012 (2007).
http://dx.doi.org/10.1103/PhysRevD.76.104012

[187] E Bianchi, L Modesto, C Rovelli, S Speziale, Graviton propagator in loop quantum gravity, Class. Quant. Grav. 23, 6989 (2006).
http://dx.doi.org/10.1088/0264-9381/23/23/024

[188] E Alesci, E Bianchi, C Rovelli, LQG propagator: III. The new vertex, Class. Quant. Grav. 26, 215001 (2009).
http://dx.doi.org/10.1088/0264-9381/26/21/215001

[189] E Bianchi, E Magliaro, C Perini, LQG propagator from the new spin foams, Nucl. Phys. B 822, 245 (2009).
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.016

[190] E Bianchi, A Satz, Semiclassical regime of Regge calculus and spin foams, Nucl. Phys. B 808, 546 (2009).
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.005

[191] E Magliaro, C Perini, Comparing LQG with the linearized theory, Int. J. Mod. Phys. A 23, 1200 (2008).
http://dx.doi.org/10.1142/S0217751X08040068

[192] E Magliaro, C Perini, Regge gravity from spinfoams, arXiv:1105.0216 (2011).

[193] D Mamone, C Rovelli, Second-order amplitudes in loop quantum gravity, Class. Quant. Grav. 26, 245013 (2009).
http://dx.doi.org/10.1088/0264-9381/26/24/245013

[194] C Rovelli, M Zhang, Euclidean three-point function in loop and perturbative gravity, Class. Quant. Grav. 28, 175010 (2011).
http://dx.doi.org/10.1088/0264-9381/28/17/175010