[1] J Anderson, Meteorological changes during a solar eclipse. Weather 54, 207 (1999).
https://doi.org/10.1002/j.1477-8696.1999.tb06465.x

[2] W Fernandez, V Castro, H Hidalgo, Air temperature and wind changes in Costa Rica during the total solar eclipse of July 11, 1991. Earth, Moon Planets 63, 133 (1993).
https://doi.org/10.1007/BF00575102

[3] W Fernandez, H Hidalgo, G Coronel, et al., Changes in meteorological variables in Coronel Oviedo, Paraguay, during the total solar eclipse of 3 November 1994. Earth, Moon Planets 74, 49 (1996).
https://doi.org/10.1007/BF00118721

[4] K L Aplin, R G Harrison, Meteorological effects of the eclipse of 11th August 1999 in cloudy and clear conditions. Proc. R. Soc. Lond. A 459, 353 (2003).
https://doi.org/10.1098/rspa.2002.1042

[5] D Founda, D Melas, S Lykoudis, et al., The effect of the total solar eclipse of 29 March 2006 on meteorological variables in Greece. Atmos. Chem. Phys. 7, 5543, (2007).
https://doi.org/10.5194/acp-7-5543-2007

[6] E Gerasopoulos, C S Zerefos, I Tsagouri, et al., The total solar eclipse of March 2006: overview. Atmospheric Chemistry and Physics, 8, 5205, (2008).
https://doi.org/10.5194/acp-8-5205-2008

[7] E Hanna, Meteorological effects of the solar eclipse of 11 August 1999. Weather 55, 430, (2000).
https://doi.org/10.1002/j.1477-8696.2000.tb06481.x

[8] Y Kawabata, Spectrographic observation on the amount of ozone at the total solar eclipse of June 19, 1936, J. Astron. Geophys., 14, 1, (1936).
https://articles.adsabs.harvard.edu/full/1936JaJAG..14..264K

[9] D Stranz, Ozone measurements during solar eclipse, Tellus, 13, 2769, (1961).
https://doi.org/10.3402/tellusa.v13i2.9448

[10] D K Chakrabarty, N C Shah, K V Pandya, Fluctuation in ozone column over Ahmedabad during the solar eclipse of 24 October 1995, Geophys. Res. Lett., 24(23), 3001, (1997).
https://doi.org/10.1029/97GL03016

[11] C S Zerefos, D S Balis, C Meleti, et al., Changes in environmental parameters during the solar eclipse of 11 August 1999, over Europe. Effects on surface UV 20 solar irradiance and total ozone, J. Geophys. Res., 26, 463, (2000).
https://doi.org/10.1016/S0273-1177(01)00279-4

[12] M Antón, A Serrano, M L Cancillo, et al., Solar irradiance and total ozone over El Arenosillo (Spain) during the solar eclipse of 3 October 2005, J. Atmos. Sol.-Terr. Phy., 72, 789, (2010).
https://doi.org/10.1016/j.jastp.2010.03.025

[13] G Bernhard, B Petkov, Measurements of Spectral Irradiance during the Solar Eclipse of 21 August 2017: Reassessment of the Effect of Solar Limb Darkening and of Changes in Total Ozone. Atmos. Chem. Phys. 19, 4703, (2019).
https://doi.org/10.5194/acp-19-4703-2019

[14] P Koepke, J Reuder, J Schween, Spectral variation of the solar radiation during an eclipse, Meteorol. Z., 10, 179, (2001).
https://doi.org/10.1127/0941-2948/2001/0010-0179

[15] Wen G., Marshak A., Tsay S.C., et al., Changes in the surface broadband shortwave radiation budget during the 2017 eclipse, Atm. Chem. and Physics, 20 (17), 10477-10491, (2020).
https://doi.org/10.5194/acp-20-10477-2020

[16] Y R Velazquez, M G Nicora, V S Galligani, et al., The 2020 Patagonian solar eclipse from the point of view of the atmospheric electric field. Papers in Physics, 14, 140008, (2022).
https://doi.org/10.4279/pip.140008

[17] M Iqbal, An Introduction to Solar Radiation. Academic. Press, Toronto, (1983).
https://doi.org/10.1016/B978-0-12-373750-2.X5001-0

[18] H R Giles, H Edward, The solar eclipse: a natural meteorological experiment Phil. Trans. R. Soc. A., 374, (2016).
https://doi.org/10.1098/rsta.2015.0225

[19] S K Kurinec, M Kucer, B Schlein, Monitoring a photovoltaic system during the partial solar eclipse of August 2017. EPJ Photovolt., (2018).
https://doi.org/10.1051/epjpv/2018005

[20] P F Orte, E Wolfram, E Luccini, et al., Saver-Net UV-total solar irradiance monitoring network in Argentina. Revista Meteorológica, Argentina. Meteorológica, 47(2), (2021).
https://doi.org/10.24215/1850468Xe016

[21] J C Antuña-Sánchez, N Díaz, R Estevan, et al., Cloud camera design using a Raspberry Pi Diseño de una cámara de nubes usando Raspberry Pi. Experiments in Fluids, 42(3), 403, (2015).
https://doi.org/10.7149/OPA.48.3.199

[22] L T Wong, W K Chow, Solar radiation model, Applied Energy, Elsevier, 69(3), 191-224, (2015).
https://doi.org/10.1016/S0306-2619(01)00012-5

[23] J P Veefkind, J F de Haan, E J Brinksma, et al., Total Ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique, IEEE Trans. Geosci. Remote Sens., 44, 1239, (2006).
https://doi.org/10.1109/TGRS.2006.871204

[24] P F Orte, E Luccini, E Wolfram, et al., Comparison of OMI-DOAS total ozone column with ground-based measurements in Argentina. Revista de Teledetección, 57, 13, (2020).
https://doi.org/10.4995/raet.2020.13673

[25] Z Zheng, Z Wei, Z Wen, et al., Inclusion of solar elevation angle in land surface albedo parameterization over bare soil surface. Journal of Advances in Modeling Earth Systems, 9, 3069, (2017).
https://doi.org/10.1002/2017MS001109

[26] B N Holben, et al., AERONET-A federated instrument network and data archive for aerosol characterization, Rem. Sens. of Env., 66, 1, (1998).
https://doi.org/10.1016/S0034-4257(98)00031-5

[27] S E Urban, Kenneth Seidelmann P., Explanatory Supplement to the Astronomical Almanac. University Science Books, California (1992).
https://uscibooks.aip.org/books/explanatory-supplement-to-the-astronomical-almanac-3rd-edition/

[28] J Meeus, Elements of Solar Eclipses, 1951-2200, Willmann-Bell, Richmond (1989).


[29] G Pfister, R L Mckenzie, J B Liley, et al., Cloud coverage based on all-sky imaging and its impact on surface solar irradiance. J. Appl. Meteorol. 42, 1421, (2003).
https://doi.org/10.1175/1520-0450(2003)042<1421:CCBOAI>2.0.CO;2