[1] W R Ketterhagen, M T am Ende, B C Hancock, Process modeling in the pharmaceutical industry using the discrete element method, J. Pharm. Sci. 98, 442 (2009).

[2] P W Cleary, Industrial particle flow modellingusing discrete element method, Eng. Comput. 26, 698 (2009).

[3] J M Boac, R P Kingsly Ambrose, M E Casada, R G Maghirang, D E Maier, Applications of discrete element method in modeling of grain postharvest operations, Food Eng. Rev. 6, 128 (2014).

[4] C R K Windows-Yule, D R Tunuguntla, D J Parker, Numerical modelling of granular flows: A reality check, Comput. Part. Mech. 3, 311 (2016).

[5] A Hassanpour, C Hare, M Pasha, Powder flow: Theory, characterisation and application, Royal Society of Chemistry, (2019).

[6] F Calvetti, R Nova, Micro-macro relationships from DEM simulated element and in-situ tests,In: Proc. 5th Int. Conf. Micromech. Granular Media: Powders and Grains 2005, Eds. R Garcı́a-Rojo, H J Herrmann, S McNamara, Pag. 245, Taylor & Francis Group, London (2005).

[7] D Kroetsch, C Wang, Particle size distribution, In: Soil sampling and methods of analysis, Eds. M R Carter, E G Gregorich, Pag. 713, CRC Press, Boca Raton (2008).

[8] W Yu, B C Hancock, Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles, Int. J. Pharm. 361, 150 (2008).

[9] R Xu, Particle characterization: Light scattering methods, Springer, Dordrecht (2001).

[10] R Xu, O A Di Guida, Comparison of sizing small particles using different technologies, Powder Technol. 132, 145 (2003).

[11] Iso 13319:2000. Determination of particle size distributions - Electrical sensing zone method, International Organization of Standardization (1999).

[12] J P Mitchell, M W Nagel, Time-of-flight aerodynamic particle size analyzers: Their use and limitations for the evaluation of medical aerosols, J. Aerosol Med. 12, 217 (1999).

[13] M J Rhodes, Introduction to particle technology, John Wiley & Sons Ltd. (2008).

[14] C R K Windows-Yule, B J Scheper, W K den Otter, D J Parker, A R Thornton, Modifying self-assembly and species separation in three-dimensional systems of shape-anisotropic particles, Phys. Rev. E 93, 020901 (2016).

[15] C Nouguier-Lehon, B Cambou, E Vincens, Influence of particle shape and angularity on the behaviour of granular materials: A numerical analysis, Int. J. Numer. Anal. Met. 27, 1207 (2003).

[16] F Ludewig, N Vandewalle, Strong interlocking of nonconvex particles in random packings, Phys. Rev. E 85, 051307 (2012).

[17] C L Lin, J D Miller, 3D characterization and analysis of particle shape using X-ray microtomography (XMT), Powder Technol. 154, 61 (2005).

[18] J-P Latham, A Munjiza, X Garcia, J Xiang, R Guises, Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation, Miner. Eng. 21, 797 (2008).

[19] C W Boon, G T Houlsby, S Utili, A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method, Comput. Geotech. 44, 73 (2012).

[20] A Neveu, R Artoni, P Richard, Y Descantes,Fracture of granular materials composed of arbitrary grain shapes: A new cohesive interaction model, J. Mech. Phys. Solids 95, 308 (2016).

[21] B Nassauer, T Liedke, M Kuna, Polyhedral particles for the discrete element method, Granul. Matter 15, 85 (2013).

[22] B Nassauer, M Kuna, Contact forces of polyhedral particles in discrete element method, Granul. Matter 15, 349 (2013).

[23] N Govender, D N Wilke, S Kok, Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method, Appl. Math. Comput. 267, 810 (2015).

[24] D N Wilke, N Govender, P Pizette, N-E Abriak, Computing with non-convex polyhedra on the GPU, In: Proc. 7th. Int. Conf. Discrete Element Methods (DEM 2016), Eds. X Li, Y Feng, G Mustoe, Pag. 1371, Springer, Singapore (2016).

[25] N Govender, P W Cleary, M Kiani-Oshtorjani,D N Wilke, C-Y Wu, H Kureck, The effect of particle shape on the packed bed effective thermal conductivity based on DEM with polyhedral particles on the GPU, Chem. Eng. Sci. 219, 115584 (2020).

[26] N Govender, A DEM study on the thermal conduction of granular material in a rotating drum using polyhedral particles on GPUs,Chem. Eng. Sci. 252, 117491 (2022).

[27] M Kodam, R Bharadwaj, J Curtis, B Hancock, C Wassgren, Force model considerationsfor glued-sphere discrete element method simulations, Chem. Eng. Sci. 64, 3466 (2009).

[28] T Weinhart, D R Tunuguntla, M P van Schrojenstein-Lantman, A J Van Der Horn, I F C Denissen, C R Windows-Yule, A C De Jong, A R Thornton, MercuryDPM: A fast and flexible particle solver part A: Technical advances, In: Proc. 7th. Int. Conf. DiscreteElement Methods (DEM 2016), Eds. X Li, Y Feng, G Mustoe, Pag. 1353, Springer, Singapore (2016).

[29] C S Chang, Measuring density and porosity of grain kernels using a gas pycnometer, Cereal Chem. 65, 13 (1988).

[30] A Glielmo, N Gunkelmann, T Pöschel, Coefficient of restitution of aspherical particles, Phys. Rev. E 90, 052204 (2014).

[31] S F Foerster, M Y Louge, H Chang, K Allia, Measurements of the collision properties of small spheres, Phys. Fluids 6, 1108 (1994).

[32] A Lorenz, C Tuozzolo, M Y Louge, Measurements of impact properties of small, nearly spherical particles, Exp. Mech. 37, 292 (1997).

[33] M Montaine, M Heckel, C Kruelle, T Schwager, Thorsten Pöschel, Coefficient of restitution as a fluctuating quantity, Phys. Rev. E 84, 041306 (2011).

[34] P Müller, M Heckel, A Sack, T Pöschel, Complex velocity dependence of the coefficient of restitution of a bouncing ball, Phys. Rev. Lett. 110, 254301 (2013).

[35] M Heckel, A Glielmo, N Gunkelmann, T Pöschel, Can we obtain the coefficient of restitution from the sound of a bouncing ball?, Phys. Rev. E 93, 032901 (2016).

[36] F Gollwitzer, I Rehberg, C A Kruelle, K Huang, Coefficient of restitution for wet particles, Phys. Rev. E 86, 011303 (2012).

[37] T Müller, K Huang, Influence of the liquid film thickness on the coefficient of restitution for wet particles, Phys. Rev. E 93, 042904 (2016).

[38] Y Meng, J Xu, Z Jin, B Prakash, Y Hu, A review of recent advances in tribology, Friction 8, 221 (2020).

[39] L Skedung, K L Harris, E S Collier, M W Rutlan, The finishing touches: The role of friction and roughness in haptic perception of surface coatings, Exp. Brain Res. 238, 1511 (2020).

[40] C R Jones, A Corona, C Amador, P J Fryer, Dynamics of fabric and dryer sheet motion in domestic clothes dryers, Dry. Technol. 2021, 1 (2021).

[41] M Alizadeh, A Hassanpour, M Pasha, MGhadiri, A Bayly, The effect of particle shape on predicted segregation in binary powder mixtures, Powder Technol. 319, 313 (2017).

[42] M Mehrabi, A Hassanpour, A Bayly, An X-ray microtomography study of particle morphology and the packing behaviour of metal powders during filling, compaction and ball indentationprocesses, Powder Technol. 385, 250 (2021).

[43] Standard test method for measuring rolling friction characteristics of a spherical shape on a flat horizontal plane. G0194-08, AmericanSociety for Testing and Materials (ASTM).

[44] W R Ketterhagen, R Bharadwaj, B C Hancock, The coefficient of rolling resistance(CoRR) of some pharmaceutical tablets, Int. J. Pharm. 392, 107 (2010).

[45] N-H Duong, E Shen, T Shinbrot, F Muzzio, Segregation in granular materials and the direct measurement of surface forces using atomic force microscopy, Powder Technol. 145, 69 (2004).

[46] C Weiss, P McLoughlin, H Cathcart, Characterisation of dry powder inhaler formulations using atomic force microscopy, Int. J. Pharm. 494, 393 (2015).

[47] M-J Colbert, M Grandbois, N Abatzoglou, Identification of inter-particular forces by atomic force microscopy and how they relate to powder rheological properties measured in shearing tests, Powder Technol. 284, 396 (2015).

[48] N A Burnham, R J Colton, H M Pollock, Interpretation of force curves in force microscopy, Nanotechnology 4, 64 (1993).

[49] H Xu, M Louge, A Reeves, Solutions of the kinetic theory for bounded collisional granular flows, Continuum Mech. Therm. 15, 321 (2003).

[50] D Schulze, Standard shear testing technique for particulate solids using the Jenike shear cell, The Institution of Chemical Engineers, Rugby (1989).

[51] J Schwedes, D Schulze, Measurement of flow properties of bulk solids, Powder Technol. 61, 59 (1990).

[52] D Schulze, Powders and bulk solids. Behaviour, characterization, storage and flow, Springer Berlin, Heidelberg (2008).

[53] C Hare, U Zafar, M Ghadiri, T Freeman, J Clayton, M J Murtagh, Analysis of the dynamics of the FT4 powder rheometer, Powder Technol. 285, 123 (2015).

[54] D C Montgomery, Design and analysis of experiments, John Wiley & Sons, Hoboken (2017).

[55] M Rackl, K J Hanley, A methodical calibration procedure for discrete element models, Powder Technol. 307, 73 (2017).

[56] M Rackl, C D Görnig, K J Hanley, W A Günthner, Efficient calibration of discrete element material model parameters using latin hypercube sampling and Kriging, In: Proc. ECCOMAS 2016 2, Eds. M Papadrakakis, V Papadopoulos, G Stefanou, V Plevris, Pag. 4061, Nat. Tech. Univ. Athens (NTUA), Athens (2016).

[57] J Yoon, Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation, Int. J. Rock Mech. Min. 44, 871 (2007).

[58] L Benvenuti, C Kloss, S Pirker, Identification of DEM simulation parameters by Artificial Neural Networks and bulk experiments, Powder Technol. 291, 456 (2016).

[59] F Ye, C Wheeler, B Chen, J Hu, K Chen, W Chen, Calibration and verification of DEM parameters for dynamic particle flow conditions using a backpropagation neural network, Adv. Powder Technol. 30, 292 (2019).

[60] S Ben Turkia, D N Wilke, P Pizette, N Govender, N-E Abriak, Benefits of virtual calibration for discrete element parameter estimation from bulk experiments, Granul. Matter 21, 1 (2019).

[61] H Chen, Y G Xiao, Y L Liu, Y S Shi, Effectof Young's modulus on DEM results regarding transverse mixing of particles within a rotating drum, Powder Technol. 318, 507 (2017).

[62] H Cheng, T Shuku, K Thoeni, H Yamamoto, Probabilistic calibration of discrete element simulations using the sequential quasi-MonteCarlo filter, Granul. Matter 20, 1 (2018).

[63] H Cheng, T Shuku, K Thoeni, P Tempone, S Luding, V Magnanimo, An iterative Bayesian filtering framework for fast and automated calibration of DEM models, Comp. Meth. Appl. Mech. 350, 268 (2019).

[64] H Cheng, V Magnanimo, T Shuku, S Luding, T Weinhart, Bayesian uncertainty quantification for geomechanical models at microand macro scales, In: Challenges and innovations in geomechanics. IACMAG 2021, Pag. 837, Springer, (2021).

[65] P Hartmann, H Cheng, K Thoeni, Performance study of iterative bayesian filtering todevelop an efficient calibration framework for DEM, Comput. Geotechn. 141, 104491 (2022).

[66] J J McCarthy, Micro-modeling of cohesive mixing processes, Powder Technol. 138, 63(2003).

[67] N Gravish, S V Franklin, D L Hu, D I Goldman, Entangled granular media, Phys. Rev. Lett. 108, 208001 (2012).

[68] C Coetzee, Simplified Johnson-Kendall-Roberts (SJKR) contact model, University of Stellenbosch Rep. (2020).

[69] A D Rosato, C Windows-Yule, Segregation in vibrated granular systems, Academic Press (2020).

[70] B K Mishra, R K Rajamani, The discrete el-ement method for the simulation of ball mills, Appl. Math. Model. 16, 598 (1992).

[71] Z Peng, S V Ghatage, E Doroodchi, J B Joshi, G M Evans, B Moghtaderi, Forces acting on a single introduced particle in a solid-liquid fluidised bed, Chem. Eng. Sci. 116, 49 (2014).

[72] A E Carlos Varas, E A J F Peters, J A MKuipers, CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics, Chem. Eng. Sci. 169, 246 (2017).

[73] V V Mahajan, T M J Nijssen, J A M Kuipers, J T Padding, Non-spherical particles in a pseudo-2D fluidised bed: Modelling study, Chem. Eng. Sci. 192, 1105 (2018).

[74] Z Li, T C E Janssen, K A Buist, N G Deen, M van Sint Annaland, J A M Kuipers, Experimental and simulation study of heat transfer in fluidized beds with heat production, Chem. Eng. J. 317, 242 (2017).

[75] X Fu, M Dutt, A C Bentham, B C Hancock, R E Cameron, J A Elliott, Investigation of particle packing in model pharmaceutical powders using X-ray microtomography and discrete element method, Powder Technol. 167, 134 (2006).

[76] Y Fu, L Wang, M T Tumay, Q Li, Quantification and simulation of particle kinematics and local strains in granular materials using X-ray tomography imaging and discrete-element method, J. Eng. Mech. 134, 143 (2008).

[77] C R K Windows-Yule, J P K Seville, A Ingram, D J Parker, Positron emission particle tracking of granular flows, Annu. Rev. Chem. Biomol. 11, 367 (2020).

[78] C R K Windows-Yule, M Herald, et al, Recent advances in positron emission particle tracking: A comparative review, Rep. Prog. Phys. 85, 016101 (2021).

[79] H Xu, A P Reeves, M Y Louge, Measurement errors in the mean and fluctuation velocities of spherical grains from a computer analysis of digital images, Rev. Sci. Instrum. 75, 811 (2004).

[80] R D Wildman, J M Huntley, Novel method for measurement of granular temperature distributions in two-dimensional vibro-fluidised beds, Powder Technol. 113, 14 (2000).

[81] I Goldhirsch, Stress, stress asymmetry and couple stress: From discrete particles to continuous fields, Granul. Matter 12, 239 (2010).

[82] T Weinhart, C Labra, S Luding, J Y Ooi, Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow, Powder Technol. 293, 138 (2016).

[83] M T Herald, J A Sykes, D Werner, J P K Seville, C R K Windows-Yule, DEM2GATE: Combining discrete element method simulation with virtual positron emission particle tracking experiments, Powder Technol. 401, 117302 (2022).