[42] E Andò, S A Hall, G Viggiani, J Desrues, P Bésuelle, Grain-scale experimental investigation of localised deformation in sand: A discrete particle tracking approach, Acta Geotech. 7, 1 (2012). https://doi.org/10.1007/s11440-011-0151-6
[43] C R K Windows-Yule, T Weinhart, D J Parker, A R Thornton, Effects of packing density on the segregative behaviors of granular systems, Phys. Rev. Lett. 112, 098001 (2014). https://doi.org/10.1103/PhysRevLett.112.098001
[44] E E Ehrichs, H M Jaeger, G S Karczmar, J B Knight, V Y Kuperman, S R Nagel, Granular convection observed by magnetic resonanceimaging, Science 267, 1632 (1995). https://doi.org/10.1126/science.267.5204.1632
[45] S S Shirsath, J T Padding, H J H Clercx, J A M Kuipers, Cross-validation of 3D particle tracking velocimetry for the study of granularflows down rotating chutes, Chem. Eng. Sci. 134, 312 (2015). https://doi.org/10.1016/j.ces.2015.05.005
[46] D Muir Wood, D Leśniewska, Stresses in granular materials, Granul. Matter 13, 395 (2011). https://doi.org/10.1007/s10035-010-0237-0
[47] R Hurley, E Marteau, G Ravichandran, José E Andrade, Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity, J Mech. Phys. Solids 63, 154 (2014). https://doi.org/10.1016/j.jmps.2013.09.013
[48] K E Daniels, J E Kollmer, J G Puckett, Photoelastic force measurements in granular materials, Rev. Sci. Instrum. 88, 051808 (2017). https://doi.org/10.1063/1.4983049
[49] A A Zadeh, J Barés, T A Brzinski, K E Daniels, et al, Enlightening force chains: A review of photoelasticimetry in granular matter, Granul. Matter 21, 1 (2019). https://doi.org/10.1007/s10035-019-0942-2
[50] P A Cundall, O D L Strack, A discrete numerical model for granular assemblies, Géotechnique 29, 47 (1979). https://doi.org/10.1680/geot.1979.29.1.47
[51] M Jean, J-J Moreau, Unilaterality and dry friction in the dynamics of rigid body collections, Proc. 1st. Contact Mech. Int. Symp., 31 (1992).
[52] F Dubois, V Acary, M Jean, The Contact Dynamics method: A nonsmooth story, C. R. Mécanique 346, 247 (2018). https://doi.org/10.1016/j.crme.2017.12.009
[53] D Sulsky, Z Chen, H L Schreyer, A particle method for history-dependent materials, Comput. Method. Appl. Mech. Eng. 118, 179 (1994). https://doi.org/10.1016/0045-7825(94)90112-0
[54] S G Bardenhagen, J U Brackbill, D Sulsky, The material-point method for granular materials, Comput. Method. Appl. Mech. Eng. 187, 529 (2000). https://doi.org/10.1016/S0045-7825(99)00338-2
[55] K Soga, E Alonso, A Yerro, K Kumar, S Bandara, Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method, Géotechnique 66, 248 (2016). https://doi.org/10.1680/jgeot.15.LM.005
[56] L F Orozco, J-Y Delenne, P Sornay, F Radjai, Rheology and scaling behavior of cascading granular flows in rotating drums, J. Rheol. 64, 915 (2020). https://doi.org/10.1122/1.5143023
[57] Y Huillca, M Silva, C Ovalle, J C Quezada, S Carrasco, G E Villavicencio, Modelling size effect on rock aggregates strength using a DEM bonded-cell model, Acta Geotech. 16, 699 (2021). https://doi.org/10.1007/s11440-020-01054-z
[58] T-L Vu, J Barés, S Mora, S Nezamabadi, Numerical simulations of the compaction of assemblies of rubberlike particles: A quantitative comparison with experiments, Phys. Rev. E 99, 062903 (2019). https://doi.org/10.1103/PhysRevE.99.062903
[59] D Cantor, M Cárdenas-Barrantes, I Preechawuttipong, M Renouf, E Azéma, Compaction model for highly deformable particle assemblies, Phys. Rev. Lett. 124, 208003 (2020). https://doi.org/10.1103/PhysRevLett.124.208003
[60] M Cárdenas-Barrantes, D Cantor, J Barés, M Renouf, Emilien Azéma, Three-dimensional compaction of soft granular packings, Soft Matter 18, 312 (2022). https://doi.org/10.1039/D1SM01241J
[61] C Voivret, F Radjaı̈, J-Y Delenne, M S El Youssoufi, Multiscale force networks in highly polydisperse granular media, Phys. Rev. Lett. 102, 178001 (2009). https://doi.org/10.1103/PhysRevLett.102.178001
[62] D Cantor, E Azéma, I Preechawuttipong, Microstructural analysis of sheared polydisperse polyhedral grains, Phys. Rev. E 101, 062901 (2020). https://doi.org/10.1103/PhysRevE.101.062901
[63] A D Rakotonirina, J-Y Delenne, F Radjai, A Wachs, Grains3D, a flexible DEM approach for particles of arbitrary convex shape - Part III: Extension to non-convex particles modelled as glued convex particles, Comp. Part. Mech. 6, 55 (2019). https://doi.org/10.1007/s40571-018-0198-3
[64] I Malinouskaya, V V Mourzenko, J-F Thovert, P M Adler, Random packings of spiky particles: Geometry and transport properties, Phys. Rev. E 80, 011304 (2009). https://doi.org/10.1103/PhysRevE.80.011304
[65] L Meng, X Yao, X Zhang, Two-dimensional densely ordered packings of non-convex bending and assembled rods, Particuology 50, 35 (2020). https://doi.org/10.1016/j.partic.2019.05.003
[66] F Ludewig, N Vandewalle, Strong interlocking of nonconvex particles in random packings, Phys. Rev. E 85, 051307 (2012). https://doi.org/10.1103/PhysRevE.85.051307
[67] E Azéma, F Radjaı̈, B Saint-Cyr, J-Y Delenne, P Sornay, Rheology of three-dimensional packings of aggregates: Microstructure and effects of nonconvexity, Phys. Rev. E 87, 052205 (2013). https://doi.org/10.1103/PhysRevE.87.052205
[68] J-P Latham, J Mindel, J Xiang, R Guises, X Garcia, C Pain, G Gorman, M Piggott, A Munjiza, Coupled FEMDEM/Fluids for coastal engineers with special reference to armour stability and breakage, Geomech Geoengin. 4, 39 (2009). https://doi.org/10.1080/17486020902767362
[69] C F Schreck, N Xu, C S O'Hern, A comparison of jamming behavior in systems composed of dimer- and ellipse-shaped particles, Soft Matter 6, 2960 (2010). https://doi.org/10.1039/c001085e
[70] T A Marschall, S Teitel, Athermal shearing of frictionless cross-shaped particles of varying aspect ratio, Granul. Matter 22, 1 (2020). https://doi.org/10.1007/s10035-019-0966-7
[71] N A Conzelmann, A Penn, M N Partl, F J Clemens, L D Poulikakos, C R Müller, Link between packing morphology and the distribution of contact forces and stresses in packings of highly nonconvex particles, Phys. Rev. E 102, 062902 (2020). https://doi.org/10.1103/PhysRevE.102.062902
[72] F Alonso-Marroquı́n, Spheropolygons: A new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies, Europhys. Lett. 83, 14001 (2008). https://doi.org/10.1209/0295-5075/83/14001
[73] S Zhao, J Zhao, A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media, Int. J. Numer. Anal. Meth. Geomech. 43, 2147 (2019). https://doi.org/10.1002/nag.2951
[74] S Wang, D Marmysh, S Ji, Construction of irregular particles with superquadric equation in DEM, Theor. App. Mech. Lett. 10, 68 (2020). https://doi.org/10.1016/j.taml.2020.01.021
[75] Z Cheng, J Wang, Estimation of contact forces of granular materials under uniaxial compression based on a machine learning model, Granul. Matter 24, 17 (2022). https://doi.org/10.1007/s10035-021-01160-z
[76] G Ma, J Mei, K Gao, J Zhao, W Zhou, D Wang, Machine learning bridges microslips and slip avalanches of sheared granular gouges, Earth Planet. Sc. Lett. 579, 117366 (2022). https://doi.org/10.1016/j.epsl.2022.117366
|