[1] P Danel, Tetrapods, Coast. Eng. Proc. 1, 28 (1953).
https://doi.org/10.9753/icce.v4.28

[2] M Muttray, B Reedijk, Design of concrete armour layers, Hansa Int. Maritime J. 6, 111 (2009).

[3] J R Medina, J Molines, M E Gómez-Martı́n, Influence of armour porosity on the hydraulic stability of cube armour layers, Ocean Eng. 88, 289 (2014).
https://doi.org/10.1016/j.oceaneng.2014.06.012

[4] J Molines, R Centi, M Di Risio, J R Medina, Estimation of layer coefficients of cubipod homogeneous low-crested structures using physical and numerical model placement tests, Coast. Eng. 168, 103901 (2021).
https://doi.org/10.1016/j.coastaleng.2021.103901

[5] O Tessmann, Topological interlocking assemblies, Proc. 30th Int. Conf. eCAADe 2, 201 (2012).

[6] S V Franklin, Geometric cohesion in granular materials, Phys. Today 65, 70 (2012).
https://doi.org/10.1063/PT.3.1726

[7] N Gravish, S V Franklin, D L Hu, D I Goldman, Entangled granular media, Phys. Rev. Lett. 108, 208001 (2012).
https://doi.org/10.1103/PhysRevLett.108.208001

[8] K Dierichs, A Menges, Aggregate architecture: Simulation models for synthetic non-convex granulates, Proc. 33rd Annual Conf. ACADIA, 301 (2013).

[9] K Dierichs, A Menges, Towards an aggregate architecture: Designed granular systems as programmable matter in architecture, Granul. Matter 18, 1 (2016).
https://doi.org/10.1007/s10035-016-0631-3

[10] Y Zhao, K Liu, M Zheng, J Barés, K Dierichs, A Menges, R Behringer, Packings of 3D stars: Stability and structure, Granul. Matter 18, 1 (2016).
https://doi.org/10.1007/s10035-016-0606-4

[11] K A Murphy, N Reiser, D Choksy, C E Singer, H M Jaeger, Freestanding loadbearing structures with Z-shaped particles, Granul. Matter 18, 1 (2016).
https://doi.org/10.1007/s10035-015-0600-2

[12] D Dumont, M Houze, P Rambach, T Salez, S Patinet, P Damman, Emergent strain stiffening in interlocked granular chains, Phys. Rev. Lett. 120, 088001 (2018).
https://doi.org/10.1103/PhysRevLett.120.088001

[13] A Hafez, Q Liu, T Finkbeiner, R A Alouhali, T E Moellendick, J C Santamarina, The effect of particle shape on discharge and clogging, Sci. Rep. 11, 1 (2021).
https://doi.org/10.1038/s41598-021-82744-w

[14] Y Zhao, J Barés, J E S Socolar, Yielding, rigidity, and tensile stress in sheared columns of hexapod granules, Phys. Rev. E 101, 062903 (2020).
https://doi.org/10.1103/PhysRevE.101.062903

[15] K Dierichs, O Kyjánek, M Loučka, A Menges, Construction robotics for designed granular materials: In situ construction with designed granular materials at full architectural scale using a cable-driven parallel robot, Constr. Robotics 3, 41 (2019).
https://doi.org/10.1007/s41693-019-00024-6

[16] E P G Bruun, R Pastrana, V Paris, A Beghini, A Pizzigoni, S Parascho, S Adriaenssens, Three cooperative robotic fabrication methods for the scaffold-free construction of a masonry arch, Autom. Constr. 129, 103803 (2021).
https://doi.org/10.1016/j.autcon.2021.103803

[17] A G Athanassiadis, M Z Miskin, P Kaplan, N Rodenberg, S H Lee, J Merritt, E Brown, J Amend, H Lipson, H M Jaeger, Particle shape effects on the stress response of granular packings, Soft Matter 10, 48 (2014).
https://doi.org/10.1039/C3SM52047A

[18] C Avendaño, F A Escobedo, Packing, entropic patchiness, and self-assembly of non-convex colloidal particles: A simulation perspective, Curr. Opin. Colloid In. 30, 62 (2017).
https://doi.org/10.1016/j.cocis.2017.05.005

[19] Y Wang, L Li, D Hofmann, J E Andrade, C Daraio, Structured fabrics with tunable mechanical properties, Nature 596, 238 (2021).
https://doi.org/10.1038/s41586-021-03698-7

[20] Aerial view of breakwater, Pok Rie, Marang, Malaysia.

[21] ICD Aggregate Wall 2017, Institute for Computational Design and Construction (ICD), University of Stuttgart (2017).
https://www.icd.uni-stuttgart.de/projects/icd-aggregate-wall-2017/

[22] Hakon Wadell, Volume, shape, and roundness of rock particles, J. Geol. 40, 443 (1932).
https://doi.org/10.1086/623964

[23] W C Krumbein, Measurement and geologicalsignificance of shape and roundness of sedimentary particles, J. Sediment. Res. 11, 64 (1941).
https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D

[24] G Lees, A new method for determining the angularity of particles, Sedimentology 3, 2 (1964).
https://doi.org/10.1111/j.1365-3091.1964.tb00271.x

[25] S J Blott, K Pye, Particle shape: A review and new methods of characterization and classification, Sedimentology 55, 31 (2008).
https://doi.org/10.1111/j.1365-3091.2007.00892.x

[26] C R I Clayton, C O R Abbireddy, R Schiebel, A method of estimating the form of coarse particulates, Géotechnique 59, 493 (2009).
https://doi.org/10.1680/geot.2007.00195

[27] G H Bagheri, C Bonadonna, I Manzella, P Vonlanthen, On the characterization of size and shape of irregular particles, Powder Technol. 270 A, 141 (2015).
https://doi.org/10.1016/j.powtec.2014.10.015

[28] M A Maroof, A Mahboubi, A Noorzad, Yaser Safi, A new approach to particle shape classification of granular materials, Transp. Geotech. 22, 100296 (2020).
https://doi.org/10.1016/j.trgeo.2019.100296

[29] E T Bowman, K Soga, W Drummond, Particle shape characterisation using Fourier descriptor analysis, Géotechnique 51, 545 (2001).
https://doi.org/10.1680/geot.2001.51.6.545

[30] G Mollon, J Zhao, 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors, Comput. Method. Appl. Mech. Eng. 279, 46 (2014).
https://doi.org/10.1016/j.cma.2014.06.022

[31] D A H Hanaor, Y Gan, M Revay, D W Airey, I Einav, 3D printable geomaterials, Géotechnique 66, 323 (2016).
https://doi.org/10.1680/jgeot.15.P.034

[32] H Zheng, D Wang, J Barés, R Behringer, Jamming by compressing a system of granular crosses, EPJ Web Conf. 140, 06014 (2017).
https://doi.org/10.1051/epjconf/201714006014

[33] D P Huet, M Jalaal, R van Beek, D van der Meer, A Wachs, Granular avalanches of entangled rigid particles, Phys. Rev. Fluids 6, 104304 (2021).
https://doi.org/10.1103/PhysRevFluids.6.104304

[34] J Landauer, M Kuhn, D S Nasato, P Foerst, H Briesen, Particle shape matters - Using 3D printed particles to investigate fundamental particle and packing properties, Powder Technol. 361, 711 (2020).
https://doi.org/10.1016/j.powtec.2019.11.051

[35] N Weiner, Y Bhosale, M Gazzola, H King, Mechanics of randomly packed filaments - The "bird nest" as meta-material, J. Appl. Phys. 127, 050902 (2020).
https://doi.org/10.1063/1.5132809

[36] R Stannarius, J Schulze, On regular and random two-dimensional packing of crosses, Granul. Matter 24, 25 (2022).
https://doi.org/10.1007/s10035-021-01190-7

[37] C Ovalle, E Frossard, C Dano, W Hu,S Maiolino, P-Y Hicher, The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data, Acta Mech. 225, 2199 (2014).
https://doi.org/10.1007/s00707-014-1127-z

[38] S Linero-Molina, L Bradfield, S G Fityus, J V Simmons, A Lizcano, Design of a 720-mm square direct shear box and investigation of the impact of boundary conditions on large-scalemeasured strength, Geotech. Test. J. 43, 1463 (2020).
https://doi.org/10.1520/GTJ20190344

[39] L Rothenburg, R J Bathurst, Analytical studyof induced anisotropy in idealized granular material, Géotechnique 39, 601 (1989).
https://doi.org/10.1680/geot.1989.39.4.601

[40] B Andreotti, Y Forterre, O Pouliquen, Granular media: Between fluid and solid, CambridgeUniversity Press, New York (2013).
https://doi.org/10.1017/CBO9781139541008

[41] J C Santamarina, G C Cho, Soil behaviour: The role of particle shape, Proc. Adv. Geotech.Eng.: The Skempton Conference , 604 (2004). [42] E Andò, S A Hall, G Viggiani, J Desrues, P Bésuelle, Grain-scale experimental investigation of localised deformation in sand: A discrete particle tracking approach, Acta Geotech. 7, 1 (2012).
https://doi.org/10.1007/s11440-011-0151-6

[43] C R K Windows-Yule, T Weinhart, D J Parker, A R Thornton, Effects of packing density on the segregative behaviors of granular systems, Phys. Rev. Lett. 112, 098001 (2014).
https://doi.org/10.1103/PhysRevLett.112.098001

[44] E E Ehrichs, H M Jaeger, G S Karczmar, J B Knight, V Y Kuperman, S R Nagel, Granular convection observed by magnetic resonanceimaging, Science 267, 1632 (1995).
https://doi.org/10.1126/science.267.5204.1632

[45] S S Shirsath, J T Padding, H J H Clercx, J A M Kuipers, Cross-validation of 3D particle tracking velocimetry for the study of granularflows down rotating chutes, Chem. Eng. Sci. 134, 312 (2015).
https://doi.org/10.1016/j.ces.2015.05.005

[46] D Muir Wood, D Leśniewska, Stresses in granular materials, Granul. Matter 13, 395 (2011).
https://doi.org/10.1007/s10035-010-0237-0

[47] R Hurley, E Marteau, G Ravichandran, José E Andrade, Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity, J Mech. Phys. Solids 63, 154 (2014).
https://doi.org/10.1016/j.jmps.2013.09.013

[48] K E Daniels, J E Kollmer, J G Puckett, Photoelastic force measurements in granular materials, Rev. Sci. Instrum. 88, 051808 (2017).
https://doi.org/10.1063/1.4983049

[49] A A Zadeh, J Barés, T A Brzinski, K E Daniels, et al, Enlightening force chains: A review of photoelasticimetry in granular matter, Granul. Matter 21, 1 (2019).
https://doi.org/10.1007/s10035-019-0942-2

[50] P A Cundall, O D L Strack, A discrete numerical model for granular assemblies, Géotechnique 29, 47 (1979).
https://doi.org/10.1680/geot.1979.29.1.47

[51] M Jean, J-J Moreau, Unilaterality and dry friction in the dynamics of rigid body collections, Proc. 1st. Contact Mech. Int. Symp., 31 (1992).

[52] F Dubois, V Acary, M Jean, The Contact Dynamics method: A nonsmooth story, C. R. Mécanique 346, 247 (2018).
https://doi.org/10.1016/j.crme.2017.12.009

[53] D Sulsky, Z Chen, H L Schreyer, A particle method for history-dependent materials, Comput. Method. Appl. Mech. Eng. 118, 179 (1994).
https://doi.org/10.1016/0045-7825(94)90112-0

[54] S G Bardenhagen, J U Brackbill, D Sulsky, The material-point method for granular materials, Comput. Method. Appl. Mech. Eng. 187, 529 (2000).
https://doi.org/10.1016/S0045-7825(99)00338-2

[55] K Soga, E Alonso, A Yerro, K Kumar, S Bandara, Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method, Géotechnique 66, 248 (2016).
https://doi.org/10.1680/jgeot.15.LM.005

[56] L F Orozco, J-Y Delenne, P Sornay, F Radjai, Rheology and scaling behavior of cascading granular flows in rotating drums, J. Rheol. 64, 915 (2020).
https://doi.org/10.1122/1.5143023

[57] Y Huillca, M Silva, C Ovalle, J C Quezada, S Carrasco, G E Villavicencio, Modelling size effect on rock aggregates strength using a DEM bonded-cell model, Acta Geotech. 16, 699 (2021).
https://doi.org/10.1007/s11440-020-01054-z

[58] T-L Vu, J Barés, S Mora, S Nezamabadi, Numerical simulations of the compaction of assemblies of rubberlike particles: A quantitative comparison with experiments, Phys. Rev. E 99, 062903 (2019).
https://doi.org/10.1103/PhysRevE.99.062903

[59] D Cantor, M Cárdenas-Barrantes, I Preechawuttipong, M Renouf, E Azéma, Compaction model for highly deformable particle assemblies, Phys. Rev. Lett. 124, 208003 (2020).
https://doi.org/10.1103/PhysRevLett.124.208003

[60] M Cárdenas-Barrantes, D Cantor, J Barés, M Renouf, Emilien Azéma, Three-dimensional compaction of soft granular packings, Soft Matter 18, 312 (2022).
https://doi.org/10.1039/D1SM01241J

[61] C Voivret, F Radjaı̈, J-Y Delenne, M S El Youssoufi, Multiscale force networks in highly polydisperse granular media, Phys. Rev. Lett. 102, 178001 (2009).
https://doi.org/10.1103/PhysRevLett.102.178001

[62] D Cantor, E Azéma, I Preechawuttipong, Microstructural analysis of sheared polydisperse polyhedral grains, Phys. Rev. E 101, 062901 (2020).
https://doi.org/10.1103/PhysRevE.101.062901

[63] A D Rakotonirina, J-Y Delenne, F Radjai, A Wachs, Grains3D, a flexible DEM approach for particles of arbitrary convex shape - Part III: Extension to non-convex particles modelled as glued convex particles, Comp. Part. Mech. 6, 55 (2019).
https://doi.org/10.1007/s40571-018-0198-3

[64] I Malinouskaya, V V Mourzenko, J-F Thovert, P M Adler, Random packings of spiky particles: Geometry and transport properties, Phys. Rev. E 80, 011304 (2009).
https://doi.org/10.1103/PhysRevE.80.011304

[65] L Meng, X Yao, X Zhang, Two-dimensional densely ordered packings of non-convex bending and assembled rods, Particuology 50, 35 (2020).
https://doi.org/10.1016/j.partic.2019.05.003

[66] F Ludewig, N Vandewalle, Strong interlocking of nonconvex particles in random packings, Phys. Rev. E 85, 051307 (2012).
https://doi.org/10.1103/PhysRevE.85.051307

[67] E Azéma, F Radjaı̈, B Saint-Cyr, J-Y Delenne, P Sornay, Rheology of three-dimensional packings of aggregates: Microstructure and effects of nonconvexity, Phys. Rev. E 87, 052205 (2013).
https://doi.org/10.1103/PhysRevE.87.052205

[68] J-P Latham, J Mindel, J Xiang, R Guises, X Garcia, C Pain, G Gorman, M Piggott, A Munjiza, Coupled FEMDEM/Fluids for coastal engineers with special reference to armour stability and breakage, Geomech Geoengin. 4, 39 (2009).
https://doi.org/10.1080/17486020902767362

[69] C F Schreck, N Xu, C S O'Hern, A comparison of jamming behavior in systems composed of dimer- and ellipse-shaped particles, Soft Matter 6, 2960 (2010).
https://doi.org/10.1039/c001085e

[70] T A Marschall, S Teitel, Athermal shearing of frictionless cross-shaped particles of varying aspect ratio, Granul. Matter 22, 1 (2020).
https://doi.org/10.1007/s10035-019-0966-7

[71] N A Conzelmann, A Penn, M N Partl, F J Clemens, L D Poulikakos, C R Müller, Link between packing morphology and the distribution of contact forces and stresses in packings of highly nonconvex particles, Phys. Rev. E 102, 062902 (2020).
https://doi.org/10.1103/PhysRevE.102.062902

[72] F Alonso-Marroquı́n, Spheropolygons: A new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies, Europhys. Lett. 83, 14001 (2008).
https://doi.org/10.1209/0295-5075/83/14001

[73] S Zhao, J Zhao, A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media, Int. J. Numer. Anal. Meth. Geomech. 43, 2147 (2019).
https://doi.org/10.1002/nag.2951

[74] S Wang, D Marmysh, S Ji, Construction of irregular particles with superquadric equation in DEM, Theor. App. Mech. Lett. 10, 68 (2020).
https://doi.org/10.1016/j.taml.2020.01.021

[75] Z Cheng, J Wang, Estimation of contact forces of granular materials under uniaxial compression based on a machine learning model, Granul. Matter 24, 17 (2022).
https://doi.org/10.1007/s10035-021-01160-z

[76] G Ma, J Mei, K Gao, J Zhao, W Zhou, D Wang, Machine learning bridges microslips and slip avalanches of sheared granular gouges, Earth Planet. Sc. Lett. 579, 117366 (2022).
https://doi.org/10.1016/j.epsl.2022.117366