[1] F Lamy, Theoretical and phenomenological aspects of non-singular black holes, Doctoral dissertation, Université Sorbonne Paris Cité-Université Paris Diderot (Paris 7)), (2018).
[2] W Huang, A new gravitation law, Int. J. Adv. Sc. Eng. Technol. 8, 24 (2020).
[3] R M Wald, Gravitational collapse and cosmic censorship, In: Black holes, gravitational radiation and the Universe, Eds. B R Iyer, B Bhawal, Pag. 69, Springer, Dordrecht (1999).
https://doi.org/10.1007/978-94-017-0934-7_5
[4] S Jhingan, G Magli, Gravitational collapse of fluid bodies and cosmic censorship: Analytic insights, In: Recent developments in general relativity, Eds. B Casciaro, D Fortunato, M Francaviglia, A Masiello, Pag. 307, Springer, Milano (2000).
https://doi.org/10.1007/978-88-470-2113-6_24
[5] R Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14, 57 (1965).
https://doi.org/10.1103/PhysRevLett.14.57
[6] S W Hawking, G F R Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge (1973).
https://doi.org/10.1017/CBO9780511524646
[7] J M M Senovilla, Singularity theorems and their consequences, Gen. Relativ. Gravit. 30, 701 (1998).
https://doi.org/10.1023/A:1018801101244
[8] J M Bardeen, Non-singular general-relativistic gravitational collapse, In: Proc. Int. Conf. GR5, Tbilisi, 174 (1968).
[9] I Dymnikova, The cosmological term as a source of mass, Class. Quantum Gravity 19, 725 (2002).
https://doi.org/10.1088/0264-9381/19/4/306
[10] P O Mazur, E Mottola, Gravitational vacuum condensate stars, Proc. Natl. Acad. Sci. U.S.A. 101, 9545 (2004).
https://doi.org/10.1073/pnas.0402717101
[11] P Nicolini, Noncommutative nonsingular black holes, arXiv preprint hep-th/0510203, (2005).
https://doi.org/10.48550/arXiv.hep-th/0510203
[12] S A Hayward, Formation and evaporation of nonsingular black holes, Phys. Rev. Lett. 96, 031103 (2006).
https://doi.org/10.1103/PhysRevLett.96.031103
[13] S Hossenfelder, L Modesto, I Prémont-Schwarz, Model for nonsingular black hole collapse and evaporation, Phys. Rev. D 81, 044036 (2010).
https://doi.org/10.1103/PhysRevD.81.044036
[14] E Ayón-Beato, A Garcı́a, Regular black hole in general relativity coupled to non-linear electrodynamics, Phys. Rev. Lett. 80, 5056 (1998).
https://doi.org/10.1103/PhysRevLett.80.5056
[15] E Ayón-Beato, A Garcı́a, Nonsingular charged black hole solution for nonlinear source, Gen. Rel. Grav. 31, 629 (1999).
https://doi.org/10.1023/A:1026640911319
[16] E Ayón-Beato, A Garcı́a, New regular black hole solution from nonlinear electrodynamics, Phys. Lett. B 464, 25 (1999).
https://doi.org/10.1016/S0370-2693(99)01038-2
[17] M S Ma, Magnetically charged regular black hole in a model of nonlinear electrodynamics, Ann. Phys. 362, 529 (2015).
https://doi.org/10.1016/j.aop.2015.08.028
[18] S H Hendi, Asymptotic Reissner-Nordstrom black holes, Ann. Phys. 333, 282 (2013).
https://doi.org/10.1016/j.aop.2013.03.008
[19] L Balart, E C Vagenas, Regular black holes with a nonlinear electrodynamics source, Phys. Rev. D 90, 124045 (2014).
https://doi.org/10.1103/PhysRevD.90.124045
[20] S I Kruglov, Nonlinear electrodynamics and black holes, Int. J. Geom. Methods Mod. Phys. 12, 1550073 (2015).
https://doi.org/10.1142/S0219887815500735
[21] S I Kruglov, Nonlinear arcsin-electrodynamics and asymptotic Reissner-Nordstrom black holes, Ann. Phys. (Berlin) 528, 588 (2016).
https://doi.org/10.1002/andp.201600027
[22] S I Kruglov, Asymptotic Reissner-Nordstrom solution within nonlinear electrodynamics, Phys. Rev. D 94, 044026 (2016).
https://doi.org/10.1103/PhysRevD.94.044026
[23] E Ayón-Beato, A Garcı́a, The Bardeen model as a nonlinear magnetic monopole, Phys. Lett. B 493, 149 (2000).
https://doi.org/10.1016/S0370-2693(00)01125-4
[24] S I Kruglov, Black hole as a magnetic monopole within exponential nonlinear electrodynamics, Ann. Phys. 378, 59 (2017).
https://doi.org/10.1016/j.aop.2016.12.036
[25] R V Maluf, J C S Neves, Bardeen regular black hole as a quantum-corrected Schwarzschild black hole, Int. J. Mod. Phys. D 28, 1950048 (2019).
https://doi.org/10.1142/S0218271819500482
[26] N E J Bjerrum-Bohr, J F Donoghue, B R Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D 67, 084033 (2003).
https://doi.org/10.1103/PhysRevD.67.084033
[27] J F Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50, 3874 (1994).
https://doi.org/10.1103/PhysRevD.50.3874
[28] G G Kirilin, I B Khriplovich, Quantum power correction of Newton's law, J. Exp. Theor. Phys. 95, 981 (2002).
https://doi.org/10.1134/1.1537290
[29] T De Lorenzo, Master's thesis: Investigating static and dynamic non-singular black holes, University of Pisa (2014).