[1] M J Rycroft, K A Nicoll, K L Aplin, R Giles Harrison, Recent advances in global electric circuit coupling between the space environment and the troposphere, J. Atmos. Sol.-Terr. Phys. 90, 198 (2012). 90:198–211, 2012.
https://doi.org/10.1016/j.jastp.2012.03.015
[2] C Haldoupis, M Rycroft, E Williams, C Price, Is the “earth-ionosphere capacitor” a valid component in the atmospheric global electric circuit?, J. Atmos. Sol.-Terr. Phys. 164, 127 (2017).
https://doi.org/10.1016/j.jastp.2017.08.012
[3] R Giles Harrison, The global atmospheric electrical circuit and climate, Surv. Geophys. 25, 441 (2004).
https://doi.org/10.1007/s10712-004-5439-8
[4] E Williams, N Nathou, E Hicks, C Pontikis, B Russell, M Miller, M J Bartholomew, The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel, Atmos. Res. 91, 292 (2009).
https://doi.org/10.1016/j.atmosres.2008.05.017
[5] R Giles Harrison, textitLong-term measurements of the global atmospheric electric circuit at Eskdalemuir, Scotland, 1911–1981, Atmos. Res. 70, 1 (2004).
https://doi.org/10.1016/j.atmosres.2003.09.007
[6] A J Bennett, R G Harrison, Atmospheric electricity in different weather conditions, Weather 62, 277 (2007).
https://doi.org/10.1002/wea.97
[7] R G Harrison, K A Nicoll, Fair weather criteria for atmospheric electricity measurements, J. Atmos. Sol.-Terr. Phys. 179, 239 (2018).
https://doi.org/10.1016/j.jastp.2018.07.008
[8] A J Bennett, R Giles Harrison, Variability in surface atmospheric electric field measurements, J. Phys.: Conf. Ser. 142, 012046 (2008).
https://doi.org/10.1088/1742-6596/142/1/012046
[9] R G Harrison, K L Aplin, Mid-nineteenth century smoke concentrations near London, Atmos. Environ. 36, 4037 (2002).
https://doi.org/10.1016/S1352-2310(02)00334-5
[10] E J Adlerman, E R Williams, Seasonal variation of the global electrical circuit, J. Geophys. Res.: Atmos. 101, 29679 (1996).
https://doi.org/10.1029/96JD01547
[11] K L Aplin, Smoke emissions from industrial western Scotland in 1859 inferred from Lord Kelvins atmospheric electricity measurements, Atmos. Environ. 50, 373 (2012).
https://doi.org/10.1016/j.atmosenv.2011.12.053
[12] R Giles Harrison, Urban smoke concentrations at Kew, London, 1898–2004, Atmos. Environ. 40, 3327 (2006).
https://doi.org/10.1016/j.atmosenv.2006.01.042
[13] H G Silva, F M Lopes, S Pereira, K Nicoll, S M Barbosa, R Conceição, S Neves, R Giles Harrison, M Collares Pereira, Saharan dust electrification perceived by a triangle of atmospheric electricity stations in Southern Portugal, J. Electrostatics 84, 106 (2016).
https://doi.org/10.1016/j.elstat.2016.10.002
[14] G M Lucas, Investigating the physical mechanisms that impact electric fields in the atmosphere, PhD thesis, University of Colorado at Boulder, 2017.
link
[15] I M Piper, A J Bennett, Observations of the atmospheric electric field during two case studies of boundary layer processes, Environ. Res. Lett. 7, 014017 (2012).
https://doi.org/10.1088/1748-9326/7/1/014017
[16] G K Manohar, S S Kandalgaonkar, M K Kulkarni, Impact of a total solar eclipse on surface atmospheric electricity, J. Geophys. Res.: Atmos. 100, 20805 (1995).
https://doi.org/10.1029/95JD01295
[17] S L Gray, R Giles Harrison, Eclipse-induced wind changes over the British Isles on the 20 March 2015, Philos. Trans. Royal Soc. A 374, 20150224 (2016).
https://doi.org/10.1098/rsta.2015.0224
[18] R Giles Harrison, E Hanna, The solar eclipse: A natural meteorological experiment, Philos. Trans. Royal Soc. A 374, 20150225 (2016).
https://doi.org/10.1098/rsta.2015.0225
[19] A J Bennett, Effects of the March 2015 solar eclipse on near-surface atmospheric electricity, Philos. Trans. Royal Soc. A 374, 20150215 (2016).
https://doi.org/10.1098/rsta.2015.0215
[20] J C Tacza, J-P Raulin, E L Macotela, E O Norabuena, G Fernandez, Atmospheric electric field variations and lower ionosphere disturbance during the total solar eclipse of 2010 July 11, Adv. Space Res. 58, 2052 (2016).
https://doi.org/10.1016/j.asr.2016.01.021
[21] F M Piscitelli, R I Saurral, The total solar eclipse of December 14, 2020 in Southern South America and its effects on atmospheric variables, Q. J. Royal Meteor. Soc. 147, 2547 (2021).
https://doi.org/10.1002/qj.4040
[22] Y R Velazquez, Estudio del gradiente de potencial (campo eléctrico vertical) atmosférico en la zona de Villa Martelli, sus implicancias locales y globales, Master's thesis, Universidad de Buenos Aires (2021).
[23] J Tacza, J-P Raulin, C A Morales, E Macotela, A Marun, G Fernandez, Analysis of long-term potential gradient variations measured in the Argentinian Andes, Atmos. Res. 248, 105200 (2021).
https://doi.org/10.1016/j.atmosres.2020.105200
[24] R Yaniv, Y Yair, C Price, S Katz, Local and global impacts on the fair-weather electric field in Israel, Atmos. Res. 172, 119 (2016).
https://doi.org/10.1016/j.atmosres.2015.12.025
[25] W D Crozier, Dust devil properties, J. Geophys. Res. 75, 4583 (1970).
https://doi.org/10.1029/JC075i024p04583
[26] A I I Ette, The effect of the Harmattan dust on atmospheric electric parameters, J. Atmos. Terr. Phys. 33, 295 (1971).
https://doi.org/10.1016/0021-9169(71)90208-X
[27] F Esposito, R Molinaro, C I Popa, C Molfese, F Cozzolino, L Marty, K Taj-Eddine, G Di Achille, G Franzese, S Silvestro, G G Ori, The role of the atmospheric electric field in the dust-lifting process, Geophys. Res. Lett. 43, 5501 (2016).
https://doi.org/10.1002/2016GL068463
[28] Y Yair, S Katz, R Yaniv, B Ziv, C Price, An electrified dust storm over the Negev desert, Israel, Atmos. Res. 181, 63 (2016).
https://doi.org/10.1016/j.atmosres.2016.06.011
[29] X-J Zheng, Electrification of wind-blown sand: Recent advances and key issues, Eur. Phys. J. E 36, 1 (2013).
https://doi.org/10.1140/epje/i2013-13138-4
[30] D Saxena, A Kumar, Measurements of atmospheric electrical conductivities during the total solar eclipse of 22 July, 2009, Indian J. Phys. 84, 783 (2010).
https://doi.org/10.1007/s12648-010-0051-x
[31] L Xie, K Han, Influence of relative humidity on the aeolian electric field, Aeolian Res. 7, 45 (2012).
https://doi.org/10.1016/j.aeolia.2012.01.002
[32] X-J Zheng, R Zhang, H Huang, Theoretical modeling of relative humidity on contact elec trification of sand particles, Sci. Rep. 4, 1 (2014).
https://doi.org/10.1038/srep04399
[33] S F Gurmani, N Ahmad, J Tacza, T Iqbal, First seasonal and annual variations of atmospheric electric field at a subtropical station in Islamabad, Pakistan, J. Atmos. Sol.-Terr. Phys. 179, 441 (2018).
https://doi.org/10.1016/j.jastp.2018.09.011
[34] M Kamogawa, Y Suzuki, R Sakai, et al., Diurnal variation of atmospheric electric field at the summit of Mount Fuji, Japan, distinctly different from the Carnegie curve in the summertime, Geophys. Res. Lett. 42, 3019 (2015).
https://doi.org/10.1002/2015GL063677
[35] W B Kunkel, The static electrification of dust particles on dispersion into a cloud, J. Appl. Phys. 21, 820 (1950).
https://doi.org/10.1063/1.1699765
[36] K A Nicoll, R Giles Harrison, V Barta, et al., A global atmospheric electricity monitoring network for climate and geophysical research, J. Atmos. Sol.-Terr. Phys. 184, 18 (2019).
https://doi.org/10.1016/j.jastp.2019.01.003