[1] N Nishizawa, T Goto, Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers, IEEE Photon. Technol. Lett. 11, 325 (1999).
http://dx.doi.org/10.1109/68.748223

[2] K Abedin, F Kubota, Wavelength tunable high-repetition-rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber, IEEE J. Sel. Topics Quantum Electron. 10, 1203 (2004).
http://dx.doi.org/10.1109/JSTQE.2004.837229

[3] J H Lee, J van Howe, C Xu, X. Liu, Soliton self-frequency shift: Experimental demonstrations and applications, IEEE J. Sel. Topics Quantum Electron. 14, 713 (2008).
http://dx.doi.org/10.1109/JSTQE.2008.915526

[4] G P Agrawal, Nonlinear fiber optics, Academic Press, San Diego (2007).

[5] F M Mitschke, L F Mollenauer, Discovery of the soliton self-frequency shift, Opt. Lett. 11, 659 (1986).
http://dx.doi.org/10.1364/OL.11.000659

[6] J P Gordon, Theory of the soliton self-frequency shift, Opt. Lett. 11, 662 (1986).
http://dx.doi.org/10.1364/OL.11.000662

[7] B Washburn, S Ralph, P Lacourt, J Dudley, Tunable near-infrared femtosecond soliton generation in photonic crystal fibres, Electronics Lett. 37, 1510 (2001).
http://dx.doi.org/10.1049/el:20011047

[8] J Takayanagi, T Sugiura, M Yoshida, N Nishizawa, 1.0-1.7 mu-m wavelength-tunable ultrashort-pulse generation using femtosecond yb-doped fiber laser and photonic crystal fiber, IEEE Photon. Technol. Lett. 18, 659 (2006).
http://dx.doi.org/10.1109/LPT.2006.884891

[9] P Russell, Photonic crystal fibers, Science 299, 358 (2003).
http://dx.doi.org/10.1126/science.1079280

[10] D V Skryabin, F Luan, J C Knight, P St J Russell, Soliton self-frequency shift cancellation in photonic crystal fibers, Science 31, 1705 (2003).
http://dx.doi.org/10.1126/science.1088516

[11] N Nishizawa, Y Ito, T Goto, 0.78-0.90 wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber, IEEE Photon. Technol. Lett. 14, 986 (2002).
http://dx.doi.org/10.1109/LPT.2002.1012407

[12] K S Abedin, F Kubota, Widely tunable femtosecond soliton pulse generation at a 10-ghz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber, Opt. Lett. 28, 1760 (2003).
http://dx.doi.org/10.1364/OL.28.001760

[13] N Ishii, C Y Teisset, E E Serebryannikov, T Fuji, T Metzger, F Krausz, A M Zheltikov, Widely tunable soliton frequency shifting of few-cycle laser pulses, Phys. Rev. E 74, 036617 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.036617

[14] M E Masip, A A Rieznik, P G Konig, D F Grosz, A V Bragas, O E Martinez, Femtosecond soliton source with fast and broad spectral tunability, Opt. Lett. 34, 842 (2009).
http://dx.doi.org/10.1364/OL.34.000842

[15] S Sanders, Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy, Appl. Phys. B Lasers Opt. 75, 799 (2002).
http://dx.doi.org/10.1007/s00340-002-1044-z

[16] J Walewski, M Borden, S Sanders, Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy, Appl. Phys. B Lasers Opt. 79, 937 (2004).
http://dx.doi.org/10.1007/s00340-004-1688-y

[17] K Sumimura, T Ohta, N Nishizawa, Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses, Opt. Lett.33, 2892 (2008).
http://dx.doi.org/10.1364/OL.33.002892

[18] K Sumimura, Y Genda, T Ohta, K Itoh, N Nishizawa, Quasi-supercontinuum generation using 1.06 mu-m ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography. Opt. Lett. 35, 3631 (2010).
http://dx.doi.org/10.1364/OL.35.003631

[19] M-C Chan, S-H Chia, T-M Liu, T-H Tsai, M-C Ho, A Ivanov, A Zheltikov, J-Y Liu, H-L Liu, C-K Sun, 1.2- to 2.2- m tunable raman soliton source based on a cr:forsterite laser and a photonic-crystal fiber, IEEE Photon. Technol. Lett. 20, 900 (2008).
http://dx.doi.org/10.1109/LPT.2008.922339

[20] J Nicholson, A Yablon, P Westbrook, K Feder, M Yan, High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation, Opt. Express 12, 3025 (2004).
http://dx.doi.org/10.1364/OPEX.12.003025

[21] R L Fork, O E Martinez, J P Gordon, Negative dispersion using pairs of prisms, Opt. Lett. 9, 150 (1984).
http://dx.doi.org/10.1364/OL.9.000150

[22] R L Fork, C H B Cruz, P C Becker, C V Shank, Compression of optical pulses to six femtoseconds by using cubic phase compensation, Opt. Lett. 12, 483 (1987).
http://dx.doi.org/10.1364/OL.12.000483

[23] J L A Chilla, O E Martinez, Direct determination of the amplitude and the phase of femtosecond light pulses, Opt. Lett. 16, 39 (1991).
http://dx.doi.org/10.1364/OL.16.000039

[24] S Costantino, A R Libertun, P D Campo, J R Torga, O E Martinez, Fast scanner with position monitor for large optical delays, Opt. Comm. 198, 287 (2001).
http://dx.doi.org/10.1016/S0030-4018(01)01541-3

[25] J Dudley, G Genty, S Coen, Supercontinuum generation in photonic crystal fibers, Rev. Mod. Phys. 78, 1135 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1135

[26] A Heidt, Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers, J. Lightwave Technol. 27, 3984 (2009).
http://dx.doi.org/10.1109/JLT.2009.2021538

[27] Q Lin, G Agrawal, Raman response function for silica fibers, Opt. Lett. 31, 3086 (2006).
http://dx.doi.org/10.1364/OL.31.003086

[28] B R Washburn, J A Buck, S E Ralph, Transform-limited spectral compression due to self-phase modulation in fibers, Opt. Lett. 25, 445 (2000).
http://dx.doi.org/10.1364/OL.25.000445