[1] H Lambers, F S Chapin, T L Pons, Plant physiological ecology, Springer Verlag, New York (1998).
[2] F Caupin, E Herbert, Cavitation in water: a review, C. R. Phys. 7, 1000 (2006).
http://dx.doi.org/10.1016/j.crhy.2006.10.015
[3] U Zimmermann, H Schneider, L H Wegner, A Haase, Water ascent in tall trees: Does evolution of land plants rely on a highly metastable state? New Phytol. 162, 575 (2004).
http://dx.doi.org/10.1111/j.1469-8137.2004.01083.x
[4] M T Tyree, The cohesion-tension theory of sap ascent: Current controversies, J. Exp. Bot. 48, 1753 (1997).
http://dx.doi.org/10.1093/jxb/48.10.1753
[5] J S Sperry, F R Adler, G S Campbell, J P Comstock, Limitation of plant water use by rhizosphere and xylem conductance: results from a model, Plant Cell Environ. 21, 347 (1998).
http://dx.doi.org/10.1046/j.1365-3040.1998.00287.x
[6] P H Maseda, R J Fernandez, Stay wet or else: Three ways in which plants can adjust hydraulically to their environment, J. Exp. Bot. 57, 3963 (2006).
http://dx.doi.org/10.1093/jxb/erl127
[7] H H Dixon, Transpiration and the ascent of sap in plants, McMillan & Co., New York (1914).
http://dx.doi.org/10.5962/bhl.title.1943
[8] H N V Temperley, The behaviour of water under hydrostatic tension: III., P. Phys. Soc. 59, 199 (1947).
http://dx.doi.org/10.1088/0959-5309/59/2/304
[9] J A Milburn, R P C Johnson, The conduction of sap. II. Detection of vibrations produced by sap cavitation in Ricinus xylem, Planta 69, 43 (1966).
http://dx.doi.org/10.1007/BF00380209
[10] D S Crombie, J A Milburn, M F Hipkins, Maximum sustainable xylem sap tensions in Rhododendron and other species, Planta 163, 27 (1985).
http://dx.doi.org/10.1007/BF00395893
[11] V G Williamson, J A Milburn, Cavitation events in cut stems kept in water: Implications for cut ower senescence, Sci. Hortic. (Amsterdam) 64, 219 (1995).
http://dx.doi.org/10.1016/0304-4238(95)00842-X
[12] M T Tyree, M A Dixon, Cavitation events in Thuja occidentalis L.? Ultrasonic acoustic emissions from the sapwood can be measured, Plant Physiol. 72, 1094 (1983).
http://dx.doi.org/10.1104/pp.72.4.1094
[13] M T Tyree, M A Dixon, R G Thompson, Ultrasonic acoustic emissions from the sapwood of Thuja occidentalis measured inside a pressure bomb, Plant Physiol. 74, 1046 (1984).
http://dx.doi.org/10.1104/pp.74.4.1046
[14] M T Tyree, E L Fiscus, S D Wullschleger, M A Dixon, Detection of xylem cavitation in corn under eld conditions, Plant Physiol. 82, 597 (1986).
http://dx.doi.org/10.1104/pp.82.2.597
[15] G M A Lo, S Salleo, Three different methods for measuring xylem cavitation and embolism: A comparison, Ann. Bot. (London) 67, 417 (1991).
[16] G E Jackson, J Grace, Field measurements of xylem cavitation: Are acoustic emissions useful? J. Exp. Bot. 47, 1643 (1996).
http://dx.doi.org/10.1093/jxb/47.11.1643
[17] S B Kikuta, P Hietz, H Richter, Vulnerability curves from conifer sapwood sections exposed over solutions with known water potentials, J. Exp. Bot. 54, 2149 (2003).
http://dx.doi.org/10.1093/jxb/erg216
[18] R Laschimke, M Burger, H Vallen, Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension, J. Plant Physiol. 163, 996 (2006).
http://dx.doi.org/10.1016/j.jplph.2006.05.004
[19] W T Pockman, J S Sperry, J W O'Leary, Sustained and signi cant negative water pressure in xylem, Nature 378, 715 (1995).
http://dx.doi.org/10.1038/378715a0
[20] H Cochard, G Damour, C Bodet, I Tharwat, M Poirier, T Ameglio, Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves, Physiol. Plantarum 124, 410 (2005).
http://dx.doi.org/10.1111/j.1399-3054.2005.00526.x
[21] P Kafalas, A P Ferdinand Jr., Fog droplet vaporization and fragmentation by a 10.6 mm laser pulse, Appl. Optics 12, 29 (1973).
http://dx.doi.org/10.1364/AO.12.000029
[22] W Hentschel, W Lauterborn, Acoustic emission of single laser-produced cavitation bubbles and their dynamic, Appl. Sci. Res. 38, 225 (1982).
http://dx.doi.org/10.1007/BF00385952
[23] S I Kudryashov, K Lyon, S D Allen, Photoacoustic study of relaxation dynamics in multibubble systems in laser-superheated water, Phys. Rev. E 73, 055301 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.055301
[24] R Zhao, R Q Xu, Z H Shen, J Lu, X W Ni, Experimental investigation of the collapse of laser-generated cavitation bubbles near a solid boundary, Opt. Laser Technol. 39, 968 (2007).
http://dx.doi.org/10.1016/j.optlastec.2006.06.005
[25] A C Tam, Applications of photoacoustic sensing techniques, Rev. Mod. Phys. 58, 381 (1986).
http://dx.doi.org/10.1103/RevModPhys.58.381
[26] M T Tyree, M A Dixon, E L Tyree, R Johnson, Ultrasonic acoustic emissions from the sapwood of Cedar and Hemlock: An examination of three hypotheses regarding cavitations, Plant Physiol. 75, 988 (1984).
http://dx.doi.org/10.1104/pp.75.4.988
[27] A G Meyra, V A Kuz, G J Zarragoicoechea, Geometrical and physicochemical considerations of the pit membrane in relation to air seeding: The pit membrane as a capillary valve, Tree Physiol. 27, 1401 (2007).
http://dx.doi.org/10.1093/treephys/27.10.1401
[28] K T Ritman, J A Milburn, Acoustic emissions from plants. Ultrasonic and audible compared, J. Exp. Bot. 39, 1237 (1988).
http://dx.doi.org/10.1093/jxb/39.9.1237