[1] A Splendiani, L Sun, Y Zhang, T Li, J Kim, C-Y Chim, G Galli, F Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10, 1271 (2010).
https://doi.org/10.1021/nl903868w
[2] K F Mak, C Lee, J Hone, J Shan, T F Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010).
https://doi.org/10.1103/physrevlett.105.136805
[3] G Wang, A Chernikov, M M Glazov, TF Heinz, X Marie, T Amand, B Urbaszek, Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90, 021001 (2018).
https://doi.org/10.1103/revmodphys.90.021001
[4] D Xiao, G-B Liu, W Feng, X Xu, W Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012).
https://doi.org/10.1103/physrevlett.108.196802
[5] G Wang, C Robert, M M Glazov, F Cadiz, E Courtade, T Amand, D Lagarde, T Taniguchi, K Watanabe, B Urbaszek, X Marie, In-plane propagation of light in transition metal dichalcogenide monolayers: Optical selection rules, Phys.Rev. Lett. 119, 047401 (2017).
https://doi.org/10.1103/physrevlett.119.047401
[6] C Robert, T Amand, F Cadiz, D Lagarde, E Courtade, M Manca, T Taniguchi, K Watanabe, B Urbaszek, X Marie, Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers, Phys. Rev. B 96, 155423 (2017).
https://doi.org/10.1103/physrevb.96.155423
[7] M R Molas, C Faugeras, A O Slobodeniuk, K Nogajewski, M Bartos, D M Basko, MPotemski, Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides, 2D Mater. 4, 021003 (2017).
https://doi.org/10.1088/2053-1583/aa5521
[8] X-X Zhang, T Cao, Z Lu, Y-C Lin, F Zhang, Y Wang, Z Li, J C Hone, J A Robinson, D Smirnov, S G Louie, T F Heinz, Magnetic brightening and control of dark excitons in monolayer WSe2, Nature Nanotechnol. 12, 883 (2017).
https://doi.org/10.1038/nnano.2017.105
[9] Y Zhou, G Scuri, D S Wild, A A High, ADibos, L A Jauregui, C Shu, K De Greve, K Pistunova, A Y Joe, T Taniguchi, K Watanabe, P Kim, M D Lukin, H Park, Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons, Nature Nanotechnol. 12, 856 (2017).
https://doi.org/10.1038/nnano.2017.106
[10] Z Jin, X Li, J T Mullen, K W Kim, Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides, Phys. Rev. B 90, 045422 (2014).
https://doi.org/10.1103/physrevb.90.045422
[11] J Lindlau, C Robert, V Funk, J Forste, M Forg, L Colombier, A Neumann, E Courtade, S Shree, M Manca, T Taniguchi, K Watanabe, M M Glazov, X Marie, B Urbaszek, A H ̈ogele, Identifying optical signatures of momentum- dark excitons in transition metal dichalcogenide monolayers, arXiv:1710.00988 (2017).
[12] F Cadiz et al., Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures, Phys. Rev. X 7, 021026 (2017).
https://doi.org/10.1103/physrevx.7.021026
[13] A R Goni, K Syassen, Optical properties of semiconductors under pressure, Semicond. Semimetals 54, 247 (1998).
https://doi.org/10.1016/s0080-8784(08)60232-x
[14] X Dou, K Ding, D Jiang, B Sun, Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure, ACS Nano 8, 7458 (2014).
https://doi.org/10.1021/nn502717d
[15] A P Nayak, T Pandey, D Voiry, J Liu, S T Moran, A Sharma, C Tan, C-H Chen, L- J Li, M Chhowalla, J-F Lin, A K Singh, D Akinwande, Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide, Nano Lett. 15, 346 (2014).
https://doi.org/10.1021/nl5036397
[16] F Li, Y Yan, B Han, L Li, X Huang, M Yao, Y Gong, X Jin, B Liu, C Zhu, Q Zhou, T Cui, Pressure confinement effect in MoS2 monolayers, Nanoscale 7, 9075 (2015).
https://doi.org/10.1039/c5nr00580a
[17] L Fu, Y Wan, N Tang, Y Ding, J, Gao, J Yu, H Guan, K Zhang, W Wang, C Zhang, J-J Shi, X Wu, S-F Shi, W Ge, L Dai, B Shen, K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure, Sci. Adv. 3, e1700162 (2017).
https://doi.org/10.1126/sciadv.1700162
[18] R S Alencar, K D A Saboia, D Machon, G Montagnac, V Meunier, O P Ferreira, A San Miguel, A G Souza Fihlo, Atomic-layer MoS2 on SiO2 under high pressure: Bimodal adhesion and biaxial strain effects, Phys. Rev. Mater. 1, 024002 (2017).
https://doi.org/10.1103/physrevmaterials.1.024002
[19] Y Ye, X Dou, K Ding, D Jiang, F Yang, B Sun, Pressure-induced K-Λ crossing in monolayer WSe2 , Nanoscale 8, 10843 (2016).
https://doi.org/10.1039/c6nr02690g
[20] B Han, F Li, L Li, X Huang, Y Gong, X Fu, H Gao, Q Zhou, T Cui, Correlatively dependent lattice and electronic structural evolutions in compressed monolayer tungsten disulfide, J. Phys. Chem. Lett. 8, 941 (2017).
https://doi.org/10.1021/acs.jpclett.7b00133
[21] T Taniguchi, K Watanabe, Synthesis of high-purity boron nitride single crystals under high pressure by using BaBN solvent, J. Cryst. Growth 303, 525 (2007).
https://doi.org/10.1016/j.jcrysgro.2006.12.061
[22] H-K Mao, J Xu, P M Bell, Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions, J. Geophys. Res. 91, 4673 (1986).
https://doi.org/10.1029/jb091ib05p04673
[23] A Carvalho, R M Ribeiro, A H Castro Neto, Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides, Phys. Rev. B 88, 115205 (2013).
https://doi.org/10.1103/physrevb.88.115205
[24] M. Wojdyr, Fityk: A general-purpose peak fitting program, J. Appl. Cryst. 43, 1126 (2010).
https://doi.org/10.1107/s0021889810030499
[25] M Brotons-Gisbert, A Segura, R Robles, ECanadell, P Ordejon, J F Sanchez-Royo, Optical and electronic properties of 2H-MoS2 under pressure: Revealing the spin-polarized nature of bulk electronic bands, Phys. Rev. Mater. 2, 054602 (2018).
https://doi.org/10.1103/physrevmaterials.2.054602
[26] A R Goni, A Cantarero, K Syassen, M Cardona, Effect of pressure on the low-temperature excitonic absorption in GaAs, Phys. Rev. B 41, 10111 (1990).
https://doi.org/10.1103/physrevb.41.10111
[27] A R Goni, K Syassen, M Cardona, Direct band gap absorption in Germanium under pressure, Phys. Rev. B 39, 12921 (1989).
https://doi.org/10.1103/physrevb.39.12921
[28] O Pierre-Louis, Adhesion of membranes and filaments on rippled surfaces, Phys. Rev. E 78, 021603 (2008).
https://doi.org/10.1103/physreve.78.021603
[29] D Machon, C Bousige, R Alencar, A Torres-Dias, F Balima, J Nicolle, G S Pinheiro, A G Souza Filho, A San Miguel, Raman scattering studies of graphene under high pressure, J. Raman Spectrosc. 49, 121 (2018).
https://doi.org/10.1002/jrs.5284
[30] C Bousige, F Balima, D Machon, G S Pinheiro, A Torres-Dias, J Nicolle, D Kalita, N Bendiab, L Marty, V Bouchiat, G Montagnac, A G Souza Fihlo, P Poncharal, A San Miguel, Biaxial strain transfer in supported graphene, Nano Lett. 17, 21 (2017).
https://doi.org/10.1021/acs.nanolett.6b02981
[31] J Nicolle, D Machon, P Poncharal, O Pierre-Louis, A San Miguel, Pressure-mediated doping in graphene, Nano Lett. 11, 3564 (2011).
https://doi.org/10.1021/nl201243c
[32] J-W Jiang, Z Qi, H S Park, T Rabczuk, Elastic bending modulus of single-layer molybdenum disulfide (MoS2): Finite thickness effect, Nanotechnol. 24, 435705 (2013).
https://doi.org/10.1088/0957-4484/24/43/435705
[33] L-P Feng, N Li, M-H Yang, Z-T Liu, Effect of pressure on elastic, mechanical and electronic properties of WSe2 : A first-principles study, Mater. Res. Bull. 50, 503 (2014).
https://doi.org/10.1016/j.materresbull.2013.11.016
[34] S V Bhatt, M P Deshpande, V Sathe, R Raoc, S H Chakia, Raman spectroscopic investigations on transition-metal dichalcogenides MX2 (M =Mo, W; X = S, Se) at high pressures and low temperature, J. Raman Spectrosc. 45, 971 (2014).
https://doi.org/10.1002/jrs.4580
[35] T Livneh, J S Reparaz, A R Goni, Low-temperature resonant Raman asymmetry in 2H-MoS2 under high pressure, J. Phys.: Condens. Matter 29, 435702 (2017).
https://doi.org/10.1088/1361-648x/aa85af
[36] E Anastassakis, M Cardona, Phonons, strains, and pressure in semiconductors, Semicond. Semimetals 55, 117 (1998).
https://doi.org/10.1016/s0080-8784(08)60081-2