[1] http://www2.vernier.com/sample_labs/PHYS-AM-18-physical_pendulum.pdf
[2] https://physics.fullerton.edu/files/Labs/225/Physical_Pendulum_V4_1(1).pdf
[3] J C Fernandes, P J Sebastiao, L N Goncalves, A Ferraz, Study of large-angle anharmonic oscillations of a physical pendulum using an acceleration sensor, Eur. J. Phys. 38, 045004 (2017).
https://doi.org/10.1088/1361-6404/aa6c52
[4] https://www.arduino.cc
[5] S Kubinova, J Slegr, Physics demonstrations with the Arduino board, Phys. Educ. 50, 472 (2015).
https://doi.org/10.1088/0031-9120/50/4/472
[6] C Galeriu, S Edwards, G Esper, An Arduino investigation of simple harmonic motion, Phys. Teach. 52, 157 (2014).
https://doi.org/10.1119/1.4865518
[7] K Atkin, Construction of a simple low-cost teslameter and its use with Arduino and MakerPlot software, Phys. Educ. 51, 024001 (2016).
https://doi.org/10.1088/0031-9120/51/2/024001
[8] C Petry et al., Project teaching beyond Physics: Integrating Arduino to the laboratory, In Technologies Applied to Electronics Teaching (TAEE), pp. 1-6, IEEE (2016).
https://doi.org/10.1109/TAEE.2016.7528376
[9] R Henaff et al., A study of kinetic friction: The Timoshenko oscillator, Am. J. Phys. 86, 174 (2018).
https://doi.org/10.1119/1.5008862
[10] F Bouquet, J Bobroff, M Fuchs-Gallezot, L Maurines, Project-based physics labs using low-cost open-source hardware, Am. J. Phys. 85, 216 (2017).
https://doi.org/10.1119/1.4972043