[1] S Lemerle, J Ferre, C Chappert, V Mathet, T Giamarchi, P Le Doussal, Domain wall creep in an Ising ultrathin magnetic film, Phys. Rev. Lett. 80, 849 (1998).
doi:10.1103/PhysRevLett.80.849
[2] M Bauer, A Mougin, J P Jamet, V Repain, J Ferre, S L Stamps, H Bernas, C Chappert, Deroughening of domain wall pairs by dipolar repulsion, Phys. Rev. Lett. 94, 207211 (2005).
doi:10.1103/PhysRevLett.94.207211
[3] M Yamanouchi, D Chiba, F Matsukura, T Dietl, H Ohno, Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As, Phys. Rev. Lett. 96, 096601 (2006).
doi:10.1103/PhysRevLett.96.096601
[4] P J Metaxas, J P Jamet, A Mougin, M Cormier, J Ferre, V Baltz, B Rodmacq, B Dieny, R L Stamps, Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy, Phys. Rev. Lett. 99, 217208 (2007).
doi:10.1103/PhysRevLett.99.217208
[5] P Paruch, T Giamarchi, J M Triscone, Domain wall roughness in epitaxial ferroelectric PbZr_{0.2}Ti_{0.8}O_{3} thin films, Phys. Rev. Lett. 94, 197601 (2005).
doi:10.1103/PhysRevLett.94.197601
[6] P Paruch, J M Triscone, High-temperature ferroelectric domain stability in epitaxial PbZr_{0.2}Ti_{0.8}O_{3} thin films, Appl. Phys. Lett. 88, 162907 (2006).
doi:10.1063/1.2196482
[7] S Moulinet, A Rosso, W Krauth, E Rolley, Width distribution of contact lines on a disordered substrate, Phys. Rev. E 69, 035103(R) (2004).
doi:10.1103/PhysRevE.69.035103
[8] N Martys, M Cieplak, M O Robbins, Critical phenomena in fluid invasion of porous media, Phys. Rev. Lett. 66, 1058 (1991).
doi:10.1103/PhysRevLett.66.1058
[9] I Hecht, H Taitelbaum, Roughness and growth in a continuous fluid invasion model, Phys. Rev. E 70, 046307 (2004).
doi:10.1103/PhysRevE.70.046307
[10] E Bouchaud, J P Bouchaud, D S Fisher, S Ramanathan, J R Rice, Can crack front waves explain the roughness of cracks?, J. Mech. Phys. Solids 50, 1703 (2002).
doi:10.1016/S0022-5096(01)00137-5
[11] M Alava, P K V V Nukalaz, S Zapperi, Statistical models of fracture, Adv. Phys. 55, 349 (2006).
doi:10.1080/00018730300741518
[12] A A Middleton, Asymptotic uniqueness of the sliding state for charge-density waves, Phys. Rev. Lett. 68, 670 (1992).
doi:10.1103/PhysRevLett.68.670
[13] D S Fisher, Sliding charge-density waves as a dynamic critical phenomenon, Phys. Rev. B 31, 1396 (1985).
doi:10.1103/PhysRevB.31.1396
[14] O Narayan, D S Fisher, Critical behavior of sliding charge-density waves in 4-e dimensions, Phys. Rev. B 46, 11520 (1992).
doi:10.1103/PhysRevB.46.11520
[15] T Nattermann, S Stepanow, L H Tang, H Leschhorn, Dynamics of interface depinning in a disordered medium, J. Phys. II 2, 1483 (1992).
doi:10.1051/jp2:1992214
[16] P Le Doussal, K J Wiese, P Chauve, Two-loop functional renormalization group theory of the depinning transition, Phys. Rev. B 66, 174201 (2002).
doi:10.1103/PhysRevB.66.174201
[17] L B Ioffe, V M Vinokur, Dynamics of interfaces and dislocations in disordered media, J. Phys. C: Solid State Phys. 20, 6149 (1987).
doi:10.1088/0022-3719/20/36/016
[18] P Chauve, T Giamarchi, P Le Doussal, Creep and depinning in disordered media, Phys. Rev. B 62, 6241 (2000).
doi:10.1103/PhysRevB.62.6241
[19] A B Kolton, A Rosso, T Giamarchi, Creep motion of an elastic string in a random potential, Phys. Rev. Lett. 94, 047002 (2005).
doi:10.1103/PhysRevLett.94.047002
[20] A B Kolton, A Rosso, T Giamarchi, W Krauth, Creep dynamics of elastic manifolds via exact transition pathways, Phys. Rev. B 79, 184207 (2009).
doi:10.1103/PhysRevB.79.184207
[21] A B Kolton, A Rosso, T Giamarchi, W Krauth, Dynamics below the depinning threshold in disordered elastic systems, Phys. Rev. Lett. 97, 057001 (2006).
doi:10.1103/PhysRevLett.97.057001
[22] L W Chen, M C Marchetti, Interface motion in random media at finite temperature, Phys. Rev. B 51, 6296 (1995).
doi:10.1103/PhysRevB.51.6296
[23] D Vandembroucq, R Skoe, S Roux, Universal depinning force fluctuations of an elastic line: Application to finite temperature behavior, Phys. Rev. E 70, 051101 (2004).
doi:10.1103/PhysRevE.70.051101
[24] U Nowak, K D Usadel, Influence of temperature on the depinning transition of driven interfaces, Europhys. Lett. 44, 634 (1998).
doi:10.1209/epl/i1998-00519-4
[25] L Roters, A Hucht, S L"ubeck, U Nowak, K D Usadel, Depinning transition and thermal fluctuations in the random-field Ising model, Phys. Rev. E 60, 5202 (1999).
doi:10.1103/PhysRevE.60.5202
[26] S Bustingorry, A B Kolton, T Giamarchi, Thermal rounding of the depinning transition, Europhys. Lett. 81, 26005 (2008).
doi:10.1209/0295-5075/81/26005
[27] S Bustingorry, A B Kolton, T Giamarchi, (unpublished).
[28] A Rosso, W Krauth, Monte Carlo dynamics of driven elastic strings in disordered media, Phys. Rev. B 65, 012202 (2001).
doi:10.1103/PhysRevB.65.012202
[29] A Rosso, W Krauth, Origin of the roughness exponent in elastic strings at the depinning threshold, Phys. Rev. Lett. 87, 187002 (2001).
doi:10.1103/PhysRevLett.87.187002
[30] A Rosso, W Krauth, Roughness at the depinning threshold for a long-range elastic string, Phys. Rev. E 65, 025101(R) (2002).
doi:10.1103/PhysRevE.65.025101
[31] A Rosso, W Krauth, P Le Doussal, J Vannimenus, K J Wiese, Universal interface width distributions at the depinning threshold, Phys. Rev. E 68, 036128 (2003).
doi:10.1103/PhysRevE.68.036128
[32] C Bolech, A Rosso, Universal statistics of the critical depinning force of elastic systems in random media, Phys. Rev. Lett. 93, 125701 (2004).
doi:10.1103/PhysRevLett.93.125701
[33] O Duemmer, W Krauth, Critical exponents of the driven elastic string in a disordered medium, Phys. Rev. E 71, 061601 (2005).
doi:10.1103/PhysRevE.71.061601
[34] A Rosso, P L Doussal, K J Wiese, Numerical calculation of the functional renormalization group fixed-point functions at the depinning transition, Phys. Rev. B 75, 220201 (2007).
doi:10.1103/PhysRevB.75.220201
[35] A Rosso, P Le Doussal, K J Wiese, Avalanche-size distribution at the depinning transition: A numerical test of the theory, Phys. Rev. B 80, 144204 (2009).
doi:10.1103/PhysRevB.80.144204
[36] A B Kolton, A Rosso, E V Albano, T Giamarchi, Short-time relaxation of a driven elastic string in a random medium, Phys. Rev. B 74, 140201 (2006).
doi:10.1103/PhysRevB.74.140201
[37] A B Kolton, G Schehr, P Le Doussal, Universal nonstationary dynamics at the depinning transition, Phys. Rev. Lett. 103, 160602 (2009).
doi:10.1103/PhysRevLett.103.160602
[38] S Bustingorry, A B Kolton, T Giamarchi, Random-manifold to random-periodic depinning of an elastic interface, Phys. Rev. B 82, 094202 (2010).
doi:10.1103/PhysRevB.82.094202
[39] A A Fedorenko, P Le Doussal, K J Wiese, Universal distribution of threshold forces at the depinning transition, Phys. Rev. E 74, 041110 (2006).
doi:10.1103/PhysRevE.74.041110
[40] A Rosso, A K Hartmann, W Krauth, Depinning of elastic manifolds, Phys. Rev. E 67, 021602 (2003).
doi:10.1103/PhysRevE.67.021602
[41] O Narayan, D Fisher, Threshold critical dynamics of driven interfaces in random media, Phys. Rev. B 48, 7030 (1993).
doi:10.1103/PhysRevB.48.7030
[42] Z Racz, Scaling functions for nonequilibrium fluctuations: A picture gallery, SPIE Proc. 5112, 248 (2003).
doi:10.1117/12.501328
[43] G Foltin, K Oerding, Z Racz, R L Workman, R K P Zia, Width distribution for random-walk interfaces, Phys. Rev. E 50, R639 (1994).
doi:10.1103/PhysRevE.50.R639
[44] T Antal, Z Racz, Dynamic scaling of the width distribution in Edwards-Wilkinson type models of interface dynamics, Phys. Rev. E 54, 2256 (1996).
doi:10.1103/PhysRevE.54.2256
[45] S Bustingorry, L F Cugliandolo, J L Iguain, Out-of-equilibrium relaxation of the Edwards-Wilkinson elastic line, J. Stat. Mech.: Theor. Exp. P09008 (2007).
doi:10.1088/1742-5468/2007/09/P09008
[46] M Plischke, Z Racz, R K P Zia, Width distribution of curvature-driven interfaces: A study of universality, Phys. Rev. E 50, 3589 (1994).
doi:10.1103/PhysRevE.50.3589
[47] A Rosso, R Santachiara, W Krauth, Geometry of Gaussian signals, J. Stat. Mech.: Theor. Exp. L08001 (2005).
doi:10.1088/1742-5468/2005/08/L08001
[48] R Santachiara, A Rosso, W Krauth, Universal width distributions in non-Markovian Gaussian processes, J. Stat. Mech.: Theor. Exp. P02009 (2007).
doi:10.1088/1742-5468/2007/02/P02009
[49] E Marinari, A Pagnani, G Parisi, Z Racz, Width distributions and the upper critical dimension of Kardar-Parisi-Zhang interfaces, Phys. Rev. E 65, 026136 (2002).
doi:10.1103/PhysRevE.65.026136
[50] S Bustingorry, Aging dynamics of non-linear elastic interfaces: The Kardar-Parisi-Zhang equation, J. Stat. Mech.: Theor. Exp. P10002 (2007).
doi:10.1088/1742-5468/2007/10/P10002
[51] S Bustingorry, J L Iguain, S Chamon, L F Cugliandolo, D Dominguez, Dynamic fluctuations of elastic lines in random environments, Europhys. Lett. 76, 856 (2006).
doi:10.1209/epl/i2006-10336-9
[52] P Le Doussal, K J Wiese, Higher correlations, universal distributions, and finite size scaling in the field theory of depinning, Phys. Rev. E 68, 046118 (2003).
doi:10.1103/PhysRevE.68.046118
[53] W Krauth, Statistical mechanics: Algorithms and computations, Oxford University Press, New York (2006).
[54] N Kokubo, R Besseling, P Kes, Dynamic ordering and frustration of confined vortex rows studied by mode-locking experiments, Phys. Rev. B 69, 064504 (2004).
doi:10.1103/PhysRevB.69.064504
[55] C Coste, J B Delfau, C Even, M S Jean, Single-file diffusion of macroscopic charged particles, Phys. Rev. E 81, 051201 (2010).
doi:10.1103/PhysRevE.81.051201
[56] S Herrera-Velarde, A Zamudio-Ojeda, R Castaneda-Priego, Ordering and single-file diffusion in colloidal systems, J. Chem. Phys. 133, 114902 (2010).
doi:10.1063/1.3479003
[57] K J Kim, J C Lee, S M Ahn, K S Lee, C W Lee, Y J Cho, S Seo, K H Shin, S B Choe, H W Lee, Interdimensional universality of dynamic interfaces, Nature (London) 458, 740 (2009).
doi:10.1038/nature07874