[1] H P Zeigler, P Marler, Neuroscience of birdsong, Cambridge University Press, Cambridge (2008).
[2] J M Wild, Neural pathways for the control of birdsong production, Dev. Neurobiol. 33, 653 (1997).
https://doi.org/10.1002/(SICI)1097-4695(19971105)33:5<653::AID-NEU11>3.0.CO;2-A
[3] F Nottebohm, The neural basis of birdsong, PLoS Biol. 3, e164 (2005).
https://doi.org/10.1371/journal.pbio.0030164
[4] R C Ashmore, J M Wild, M F Schmidt, Brainstem and forebrain contributions to the generation of learned motor behaviors for song, J. Neurosci. 25, 37 (2005).
https://doi.org/10.1523/JNEUROSCI.1668-05.2005
[5] R H Hahnloser, A Kotowicz, Auditory representations and memory in birdsong learning, Curr. Opin. Neurobiol. 20, 332 (2010).
https://doi.org/10.1016/j.conb.2010.02.011
[6] F Goller, R A Suthers, Role of syringeal muscles in controlling the phonology of bird song, J. Neurophysiol. 76, 287 (1996).
https://doi.org/10.1152/jn.1996.76.1.287
[7] F Goller, R A Suthers, Role of syringeal muscles in gating airflow and sound production in singing brown thrashers, J. Neurophysiol. 75, 867 (1996).
https://doi.org/10.1152/jn.1996.75.2.867
[8] G B Mindlin, T J Gardner, F Goller, R Suthers, Experimental support for a model of birdsong production, Phys. Rev. E 68, 041908 (2003).
https://doi.org/10.1103/PhysRevE.68.041908
[9] M F Schmidt, F Goller, Breathtaking songs: Coordinating the neural circuits for breathing and singing, Physiology 31, 442 (2016).
https://doi.org/10.1152/physiol.00004.2016
[10] G Angle, H Coskun, A complete syllable dictionary for Serinus canarius, Ecol. Inf. 20, 67 (2014).
https://doi.org/10.1016/j.ecoinf.2014.01.002
[11] J A Alliende, J M Mendez, F Goller, G B Mindlin, Hormonal acceleration of song development illuminates motor control mechanism in canaries, Dev. Neurobiol. 70, 943 (2010).
https://doi.org/10.1002/dneu.20835
[12] R H Hahnloser, A A Kozhevnikov, M S Fee, An ultra-sparse code underlies the generation of neural sequences in a songbird, Nature 419, 6902 (2002).
https://doi.org/10.1038/nature00974
[13] M S Fee, A A Kozhevnikov, R H Hahnloser, Neural mechanisms of vocal sequence generation in the songbird, Ann. NY. Acad. Sci. 1016, 153 (2004).
https://doi.org/10.1196/annals.1298.022
[14] M A Long, M S Fee, Using temperature to analyse temporal dynamics in the songbird motor pathway, Nature 456, 189 (2008).
https://doi.org/10.1038/nature07448
[15] R G Alonso, M A Trevisan, A Amador, F Goller, G B Mindlin, A circular model for song motor control in Serinus canaria. Front. Comput. Neurosci. 9, 1 (2015).
https://doi.org/10.3389/fncom.2015.00041
[16] A Amador, S Boari, G B Mindlin, From perception to action in songbird production: Dynamics of a whole loop, Curr. Opin. Syst. Biol. 3, 30 (2017).
https://doi.org/10.1016/j.coisb.2017.03.004
[17] R Bertram, A
Daou, R L Hyson, F Johnson, W Wu, Two neural streams, one voice: Pathways for theme and variation in the songbird brain, Neuroscience 277, 806 (2014).
https://doi.org/10.1016/j.neuroscience.2014.07.061
[18] M F Schmidt, J M Wild, The respiratory-vocal system of songbirds: Anatomy, physiology, and neural control, Prog. Brain Res. 212, 297 (2014).
https://doi.org/10.1016/B978-0-444-63488-7.00015-X
[19] M A Goldin, L M Alonso, J A Alliende, F Goller, G B Mindlin, Temperature induced syllable breaking unveils nonlinearly interacting timescales in birdsong motor pathway, PLoS One 8, e67814 (2013).
https://doi.org/10.1371/journal.pone.0067814
[20] M A Goldin, G B Mindlin, Evidence and control of bifurcations in a respiratory system, Chaos 23, 043138 (2013).
https://doi.org/10.1063/1.4854395
[21] A S Andalman, J N Foerster, M S Fee, Control of vocal and respiratory patterns in birdsong: Dissection of forebrain and brainstem mechanisms using temperature, PLoS One 6, e25461 (2011).
https://doi.org/10.1371/journal.pone.0025461
[22] K Hamaguchi, M Tanaka, R Mooney, A distributed recurrent network contributes to temporally precise vocalizations, Neuron 91, 1 (2016).
https://doi.org/10.1016/j.neuron.2016.06.019
[23] Y S Zhang, J D Wittenbach, D Z Jin, A A Kozhevnikov, Temperature manipulation in songbird brain implicates the premotor nucleus HVC in birdsong syntax, J. Neurosci. 37, 2600 (2017).
https://doi.org/10.1523/JNEUROSCI.1827-16.2017
[24] M A Goldin, G B Mindlin, Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus, PLoS Comput. Biol. 13, e1005699 (2017).
https://doi.org/10.1371/journal.pcbi.1005699
[25] D Galvis, W Wu, R L Hyson, F Johnson, R Bertram, A distributed neural network model for the distinct roles of medial and lateral HVC in zebra finch song production, J. Neurophysiol. 118, 677 (2017).
https://doi.org/10.1152/jn.00917.2016
[26] J Kornfeld, S E Benezra, R T Narayanan, F Svara, R Egger, M Oberlaender, W Denk, M A Long, EM connectomics reveals axonal target variation in a sequence-generating network, eLife 6, e24364 (2017).
https://doi.org/10.7554/eLife.24364
[27] M F Schmidt, R C Ashmore, E T Vu, Bilateral control and interhemispheric coordination in the avian song motor system, Ann. NY. Acad. Sci. 1016, 171 (2004).
https://doi.org/10.1196/annals.1298.014
[28] R C Ashmore, J A Renk, M F Schmidt, Bottom-up activation of the vocal motor forebrain by the respiratory brainstem, J. Neurosci. 28, 2613 (2008).
https://doi.org/10.1523/JNEUROSCI.4547-07.2008
[29] R A Suthers, S A Zollinger, Producing song: The vocal apparatus, Ann. NY. Acad. Sci. 1016, 109 (2004).
https://doi.org/10.1196/annals.1298.041
[30] F C Hoppensteadt, E M Izhikevich, Weakly connected neural networks, Springer, New York (1997).
https://doi.org/10.1007/978-1-4612-1828-9
[31] J S McCasland, M Konishi, Interaction between auditory and motor activities in an avian song control
nucleus, P. Natl. Acad. Sci. USA 78, 7815 (1981).
https://doi.org/10.1073/pnas.78.12.7815
[32] A Amador, Y S Perl, G B Mindlin, D Margoliash, Elemental gesture dynamics are encoded by song premotor cortical neurons, Nature 495, 59 (2013).
https://doi.org/10.1038/nature11967
[33] R Mooney, J F Prather, The HVC microcircuit: The synaptic basis for interactions between song motor and vocal plasticity pathways, J. Neurosci. 25, 1952 (2005).
https://doi.org/10.1523/JNEUROSCI.3726-04.2005|