[1] P Hohenberg, W Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964).
https://doi.org/10.1103/PhysRev.136.B864

[2] R O Jones, O Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61, 689 (1989).
https://doi.org/10.1103/RevModPhys.61.689

[3] G Kotliar, D Vollhardt, Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory, Physics Today 57, 53 (2004).
https://doi.org/10.1063/1.1712502

[4] A Georges, G Kotliar, W Krauth, M J Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68, 13 (1996).
https://doi.org/10.1103/RevModPhys.68.13

[5] G Kotliar, S Y Savrasov, G Palsson, G Biroli, Cellular dynamical mean field approach to strongly correlated systems, Phys. Rev. Lett. 87, 186401 (2001).
https://doi.org/10.1103/PhysRevLett.87.186401

6] T Maier, M Jarrell, T Pruschke, M H Hettler, Quantum cluster theories, Rev. Mod. Phys. 77, 1027 (2005).
https://doi.org/10.1103/RevModPhys.77.1027

[7] M H Hettler, A N Tahvildar-Zadeh, M Jarrell, T Pruschke, H R Krishnamurthy, Nonlocal dynamical correlations of strongly interacting electron systems, Phys. Rev. B 58, R7475 (1998).
https://doi.org/10.1103/PhysRevB.58.R7475

[8] D Senechal, D Perez, M Pioro-Ladriere, Spectral Weight of the Hubbard Model through Cluster Perturbation Theory, Phys. Rev. Lett. 84, 522 (2000).
https://doi.org/10.1103/PhysRevLett.84.522

[9] M Imada, T Miyake, Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems, J. Phys. Soc. Jpn. 79, 112001 (2010).
https://doi.org/10.1143/JPSJ.79.112001

[10] K Held, Electronic Structure Calculations using Dynamical Mean Field Theory, Adv. in Phys. 56, 829 (2007).
https://doi.org/10.1080/00018730701619647

[11] V I Anisimov, A I Poteryaev, M A Korotin, A O Anokhin, G Kotliar, First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory, J. Phys. Condens. Mat. 9, 7359 (1997).
https://doi.org/10.1088/0953-8984/9/35/010

[12] A I Lichtenstein, M I Katsnelson, Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach, Phys. Rev. B 57, 6884 (1998).
https://doi.org/10.1103/PhysRevB.57.6884

[13] A Georges, G Kotliar, Hubbard model in infinite dimensions, Phys. Rev. B 45, 6479 (1992).
https://doi.org/10.1103/PhysRevB.45.6479

[14] M J Rozenberg, G Kotliar, X Y Zhang, Mott-Hubbard transition in infinite dimensions. II, Phys. Rev. B 49, 10181 (1994).
https://doi.org/10.1103/PhysRevB.49.10181

[15] M Caffarel, W Krauth, Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity, Phys. Rev. Lett. 72, 1545 (1994).
https://doi.org/10.1103/PhysRevLett.72.1545

[16] J E Hirsch, R M Fye, Monte Carlo Method for Magnetic Impurities in Metals, Phys. Rev. Lett. 56, 2521 (1986).
https://doi.org/10.1103/PhysRevLett.56.2521

[17] A N Rubtsov, V V Savkin, and A. I. Lichtenstein, Continuous-time quantum Monte Carlo method for fermions, Phys. Rev. Lett. 72, 035122 (2005).
https://doi.org/10.1103/PhysRevB.72.035122

[18] P. Werner, A. Comanac, L de Medici, M Troyer, A J Millis, Continuous-Time Solver for Quantum Impurity Models, Phys. Rev. Lett. 97, 076405 (2006).
https://doi.org/10.1103/PhysRevLett.97.076405

[19] H Park, K Haule, G Kotliar, Cluster Dynamical Mean Field Theory of the Mott Transition, Phys. Rev. Lett. 101, 186403 (2008).
https://doi.org/10.1103/PhysRevLett.101.186403

[20] E Gull, A J Millis, A I Lichtenstein, A N Rubtsov, M Troyer, P Werner, Continuous-time Monte Carlo methods for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011).
https://doi.org/10.1103/RevModPhys.83.349

[21] T Pruschke, D L Cox, M Jarrell, Hubbard model at infinite dimensions: Thermodynamic and transport properties, Phys. Rev. Lett. 47, 3553 (1993).
https://doi.org/10.1103/PhysRevB.47.3553

[22] K G Wilson, The renormalization group: Critical phenomena and the Kondo problem, Rev. Mod. Phys. 47, 773 (1975).
https://doi.org/10.1103/RevModPhys.47.773

[23] R Bulla, Zero temperature metal-insulator transition in the infinite-dimensional hubbard mode, Phys. Rev. Lett. 83, 136 (1999);
https://doi.org/10.1103/PhysRevLett.83.136

R Bulla, A C Hewson, T Pruschke, Numerical renormalization group calculations for the self-energy of the impurity Anderson model, J. Phys. Condens. Mat. 10, 8365 (1998).
https://doi.org/10.1088/0953-8984/10/37/021

[24] K Hallberg, D J Garcia, P Cornaglia, J Facio, Y Nunez Fernandez, State-of-the-art techniques for calculating spectral functions in models for correlated materials, EPL 112, 17001 (2015).
https://doi.org/10.1209/0295-5075/112/17001

[25] D J Garcia, K Hallberg, M J Rozenberg, Dynamical mean field theory with the density matrix renormalization group, Phys. Rev. Lett. 93, 246403 (2004).
https://doi.org/10.1103/PhysRevLett.93.246403

[26] D J Garcia, E Miranda, K Hallberg, M J Rozenberg, Mott transition in the Hubbard model away from particle-hole symmetry, Phys. Rev. B 75, 121102 (2007);
https://doi.org/10.1103/PhysRevB.75.121102

E Miranda, D J Garcia, K Hallberg, M J Rozenberg, The metal-insulator transition in the paramagnetic Hubbard Model, Physica B: Cond. Mat. 403, 1465 (2008);
https://doi.org/10.1016/j.physb.2007.10.169

D J Garcia, E Miranda, K Hallberg, M J Rozenberg, Metal-insulator transition in correlated systems: A new numerical approach, Physica B: Cond. Mat. 398, 407 (2007;
https://doi.org/10.1016/j.physb.2007.04.049

D J Garcia, E Miranda, K Hallberg, M J Rozenberg, Metal-insulator transition in correlated systems: A new numerical approach, Physica B: Cond. Mat. 398, 407 (2007;
https://doi.org/10.1016/j.physb.2007.04.049

S Nishimoto, F Gebhard, E Jeckelmann, Dynamical density-matrix renormalization group for the Mott-Hubbard insulator in high dimensions, J. Phys. Condens. Mat. 16, 7063 (2004);
https://doi.org/10.1088/0953-8984/16/39/038

M Karski, C Raas, G Uhrig, Electron spectra close to a metal-to-insulator transition, Phys. Rev. B 72, 113110 (2005);
https://doi.org/10.1103/PhysRevB.72.113110

https://doi.org/10.1103/PhysRevB.77.075116 C Raas, P Grete, G Uhrig, Emergent Collective Modes and Kinks in Electronic Dispersions, Phys. Rev. Lett. 102, 076406 (2009).
https://doi.org/10.1103/PhysRevLett.102.076406

[27] Y Nunez Fernandez, D Garcia, K Hallberg, The two orbital Hubbard model in a square lattice: a DMFT + DMRG approach, J. Phys.: Conf. Ser. 568, 042009 (2014).
https://doi.org/10.1088/1742-6596/568/4/042009

28] M Ganahl et al, Efficient DMFT impurity solver using real-time dynamics with matrix product states, Phys. Rev. B 92, 155132 (2015).
https://doi.org/10.1103/PhysRevB.92.155132

[29] F Wolf, J Justiniano, I McCulloch, U Schollwock, Spectral functions and time evolution from the Chebyshev recursion, Phys. Rev. B 91, 115144 (2015).
https://doi.org/10.1103/PhysRevB.91.115144

[30] T D Kuhner, S R White, Dynamical correlation functions using the density matrix renormalization group, Phys. Rev. B 60, 335 (1999).
https://doi.org/10.1103/PhysRevB.60.335

[31] A Holzner, A Weichselbaum, J von Delft, Matrix product state approach for a two-lead multilevel Anderson impurity model, Phys. Rev. B 81, 125126 (2010).
https://doi.org/10.1103/PhysRevB.81.125126

[32] F Alexander Wolf, I McCulloch, U Schollwock, Solving nonequilibrium dynamical mean-field theory using matrix product states, Phys. Rev. B 90, 235131 (2014).
https://doi.org/10.1103/PhysRevB.90.235131