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Self-sustained oscillations with delayed velocity feedback

D. H. Zanette1∗

We study a model for a nonlinear mechanical oscillator, relevant to the dynamics of micro-
and nanomechanical time-keeping devices, where periodic motion is sustained by a feedback
force proportional to the oscillation velocity. Specifically, we focus our attention on the
effect of a time delay in the feedback loop, assumed to originate in the electric circuit that
creates and injects the self-sustaining force. Stationary oscillating solutions to the equation
of motion, whose stability is insured by the crucial role of nonlinearity, are analytically
obtained through suitable approximations. We show that a delay within the order of the
oscillation period can suppress self-sustained oscillations. Numerical solutions are used to
validate the analytical approximations.

I. Introduction

Inside any modern time-keeping device, the princi-
pal component is an oscillator which autonomously
generates a stationary periodic signal with a well-
defined frequency. The only external input to the
system is the power needed to sustain the oscilla-
tions. In devices based on mechanical oscillators
–which comprise essentially all present-day clocks,
with the exception of the atomic kind–, sustained
periodic motion is achieved by forcing the oscillator
with a conditioned version of the signal generated
by the oscillator itself [1]. If this reinjected force is
in-phase with the oscillation velocity, the resonant
response is maximal, thus optimizing power con-
sumption during the process of signal conditioning.

Purely mechanical devices employed this feed-
back scheme already in the Middle Ages. In fact,
the escapement mechanism was routinely used in
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clock building since the 13th century. In modern
clocks, oscillators are built from synthetic quartz
crystals and feedback is implemented electronically.
At the micro- and nanoscale, quartz crystals are
expected to be replaced by simpler mechanical os-
cillators such as tiny vibrating silica beams [2, 3],
which are easily built during circuit printing and
can be actuated by very small electric fields [4, 5].

In a series of recent experiments on microme-
chanical oscillators, it has been shown that self-
sustained oscillations can be achieved with a feed-
back force proportional to the oscillation velocity
[6]. Since a purely linear mechanical system can-
not display stable periodic motion, this kind of
feedback force must necessarily be compensated
by some nonlinear contribution from the oscillator
dynamics itself. In the experiments, this balance
turned out to come from the damping force, which
was proportional to the velocity but showed a non-
linear dependence on the oscillation amplitude.

In the present paper, we analyze a model for self-
sustained periodic motion in a mechanical oscillator
subjected to a feedback force proportional to the
velocity, and nonlinear amplitude-dependent terms
both in damping and in the restoring force. Em-
phasis is put on the effects of time delays in the
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feedback circuit, which modify the phase shift be-
tween the feedback force and the velocity. It is
shown that these delays affect the response of the
oscillator, to the point that stable periodic motion
can even be suppressed. The model is studied an-
alytically within suitable approximations, and the
results are compared with numerical solutions to
the equation of motion.

II. Mechanical model for self-
sustained oscillations

Our model is based on an equation of motion for a
one-dimensional variable x(t), which represents the
departure from equilibrium of a mechanical oscilla-
tor:

ẍ+ µ(1 + αx2)ẋ+ (1 + βx2)x = gẋ(t− τ), (1)

where µ is the damping coefficient per unit mass.
The coefficients α and β weight the amplitude-
dependent nonlinear corrections to the damping
force and to the elastic force, respectively. The for-
mer is a Van der Pol-like nonlinearity, while the
cubic contribution to the restoring force defines a
Duffing oscillator [7]. Both kinds of nonlinearity,
with α, β > 0, have been experimentally verified
to occur in micromechanical oscillators formed by
silica beams clamped at their two ends (clamped-
clamped, or c-c beams [4, 6]). In the main oscilla-
tion mode, c-c beams vibrate much like a plucked
string, so that x(t) can be associated with the dis-
placement of the middle point of the beam with
respect to its rest position.

The right-hand side of Eq. (1) represents the
feedback force per unit mass, which is proportional
to the velocity at the delayed time t − τ . As
stated in the introduction, this delay is expected to
originate in the electric circuit that reads, condi-
tions, and reinjects the oscillator signal, due to the
time elapsed during signal processing. Although
τ should be a very short time, it is not necessarily
negligible as compared with other time scales in the
system, in particular with the oscillation period. In
fact, micro- and nano-oscillators vibrate with fre-
quencies from the order of 100 kHz [4] to 1 GHz
[8].

Time units in Eq. (1) have been chosen in such
a way that the natural frequency of the undamped

(µ = 0), linear (β = 0), unforced (g = 0) oscillator
equals unity. Meanwhile, the units of x can be fixed
in such a way that the coefficient α adopts any
prescribed value. Hence, without generality loss
and for future convenience, we fix α = 4.

i. Approximate stationary solutions

Nonlinearity in Eq. (1) prevents obtaining an ex-
act solution. Approximate stationary solutions can
be found by the standard procedure of neglect-
ing higher-harmonic contributions to the oscilla-
tions [7]. Within this approximation, and propos-
ing x(t) = 1

2A exp(iωt) + c.c., we get a complex
algebraic equation whose real and imaginary parts
read

1− ω2 + bA2 = gω sinωτ, (2)

with b = 3β/4, and

µ(1 +A2) = g cosωτ. (3)

These are equations for the unknowns A and ω,
which have been obtained assuming A,ω 6= 0.

Note that, to have a non-negative solution for
A2, Eq. (3) requires that g ≥ µ. Physically, this
amounts to require that the energy input from the
feedback force is not less than the energy dissipated
by damping. Otherwise, stationary periodic mo-
tion cannot be sustained. In the following, thus,
we work under the assumption that such condition
holds.

Squaring and summing up Eqs. (2) and (3), we
obtain

(1− ω2 + bA2)2 + µ2ω2(1 +A2)2 = g2ω2, (4)

namely, a relation between the oscillation ampli-
tude A and the frequency ω which does not involve
explicitly the delay τ . Black (full and dotted) lines
in Fig. 1 represent this relation for the parameters
indicated in the figure.

The graph of the relation between amplitude and
frequency expressed by Eq. (4) can be interpreted
as a resonance curve, in the sense that it character-
izes the response of the oscillator to the feedback
force. In fact, its shape resembles the upper part
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Figure 1: Amplitude-frequency relation, Eq. (4),
for µ = 0.1, g = 0.12, and b = 4. Full and dotted
black lines show the branches where τ is positive
and negative, respectively. The green dot stands
at the point of maximal amplitude, corresponding
to delay τ = 0. For positive delays, oscillations
become suppressed for τ = τ0, at frequency ω0,
where the amplitude vanishes. The magenta line
is the short-delay approximation, and the cyan line
is the backbone curve. The inset shows a close-up
around the peak.

of the Duffing resonance curve [7], and its mathe-
matical origin is similar. From the physical point
of view, however, it is important to stress that ω is
not a control parameter –as in the standard case of
an externally forced system– but emerges as an au-
tonomous dynamical property of the self-sustained
oscillator. The parameter whose variation defines
the resonance curve of Fig. 1 is, on the other hand,
the time delay τ . In the figure, we have highlighted
the point corresponding to τ = 0 which, as can be
seen from Eq. (3), corresponds to the maximum of
the amplitude,

Amax =

√
g

µ
− 1. (5)

Note that, due to the smooth profile of the reso-
nance curve at its peak, the frequency at τ = 0,
given by

√
1 + bA2

max, does not equal the maxi-
mum frequency attainable by the oscillator, but lies
slightly below. This is better appreciated in the fig-
ure inset.

Different line types (full and dotted) in Fig. 1 rep-
resent the branches of positive and negative τ . Nat-
urally, in an experiment, only the branch of positive
time delays can be observed. However, stationary
oscillatory solutions exist –and, as we discuss later,
are stable– irrespectively of the sign of τ .

ii. Oscillation suppression

The most relevant dynamical feature emerging
from Eqs. (2) and (3) is that, as τ varies from zero
to both positive and negative values, the oscillation
amplitude decreases and, eventually, vanishes for
sufficiently long delays. This situation is reached at
the points where the resonance curve in Fig. 1 in-
tersects the horizontal axis. Focusing on the branch
of positive delays, oscillations are suppressed when
their frequency reaches

ω0 =

√
1 + ∆−

√
(1 + ∆)2 − 1, (6)

with ∆ = (g2 − µ2)/2, corresponding to a critical
delay

τ0 = ω−1
0

∣∣∣∣arccos
µ

g

∣∣∣∣ . (7)

Oscillation suppression can be understood in
qualitative terms as a consequence of the increas-
ing phase shift between the feedback force and the
velocity when τ grows. As the phase shift becomes
larger, the “timing” of energy supply by feedback
fails to counteract energy dissipation by damping.
The energy balance –implicit in Eq. (3)– cannot be
further maintained, and periodic motion dies out.

Figure 2 shows the critical delay τ0 at which oscil-
lations are suppressed, as a function of the feedback
amplitude g, and for various values of the damping
µ. For g just above µ, τ0 grows from zero and –if
µ is small enough– attains a plateau around π/2.
Note that, since the oscillation frequency is always
near unity, in this plateau the phase shift between
feedback and velocity is also close to π/2. In other
words, in this zone the feedback force is in-phase
with the displacement x(t). For larger values of g,
τ0 leaves the plateau and grows further.

We point out that very small values of the damp-
ing µ, as considered in Fig. 2, are realistic when
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Figure 2: Critical time delay for oscillation sup-
pression, τ0 as given by Eq. (7), vs. the feedback
force amplitude g, for various values of the damping
coefficient µ.

working with micro- and nanomechanical oscilla-
tors. Indeed, these devices have quality factors Q
(∼ µ−1) typically above 104 [4]. In Fig. 1, on the
other hand, we have chosen a relatively large value
of µ for clarity in the graphical representation. For
very small values of µ, in fact, the resonance curve
becomes too narrow for its features to be clearly
discerned in a plot.

iii. Stability of self-sustained oscillations

Stability of the stationary oscillatory solutions pre-
sented above can be assessed by the method of mul-
tiple time scales [7], which provides equations of
motion for the relatively slow dynamics of the os-
cillation amplitude and phase. The method works
under the assumption that there is a clear separa-
tion between the oscillation period and other time
scales involved in the system. In the present case,
this condition is fulfilled for small damping, µ� 1,
as it is energy dissipation which controls the relax-
ation of amplitude and frequency to their asymp-
totic values.

Application of the method of multiple scales to
Eq. (1) straightforwardly shows that when oscil-
latory solutions of non-vanishing amplitude do ex-
ist, they are stable under arbitrary perturbations to
their amplitude and phase (or frequency), irrespec-

tively of the sign of the delay. Instead of giving the
details of this standard calculation, we resort here
to a simple physical argument to explain stability,
which sheds useful light on the role of nonlinearity.

Assume that the oscillator is in stationary peri-
odic motion. This implies, in particular, that the
energy input from feedback is exactly balanced by
dissipation. If motion is now perturbed in such a
way that the oscillation amplitude increases, the ve-
locity increases accordingly, thus making feedback
and damping to grow in the same proportion (since
both are proportional to the velocity). However,
due to the amplitude-dependent nonlinear correc-
tion in the damping coefficient, there is an extra
growth in damping which enhances dissipation and
therefore counteracts the perturbation, as the am-
plitude will tend to decrease. A symmetric argu-
ment applies if, on the contrary, the amplitude is
perturbed to lower values.

If, on the other hand, the perturbation makes the
frequency to increase, the velocity also increases as
so do feedback and damping. Through the cubic
nonlinearity in the restoring force, however, such
change in the frequency leads the amplitude to
grow. This growth, in turn, implies an enhance-
ment in dissipation, as explained in the preceding
paragraph. Consequently, the perturbation is coun-
teracted by the oscillator response. The case where
the frequency decreases is analogous. Under per-
turbations of both amplitude and frequency, there-
fore, nonlinearity plays a key role in insuring the
stability of stationary oscillations.

III. Further approximations

i. Backbone approximation

As mentioned in section II.ii., a realistic limit when
working with micro- and nanomechanical oscilla-
tors consists in considering very small values of the
damping coefficient µ. In order to insure the ex-
istence of physically meaningful solutions for the
amplitude and the frequency, however, Eq. (3) re-
quires that the limit of µ → 0 is taken along with
the limit g → 0, maintaining a finite ratio r = g/µ.
In physical terms, this joint limit is justified by the
fact that the smaller the rate of energy dissipation,
the smaller the feedback force necessary to main-
tain oscillatory motion.

In the crudest approximation, the resonance
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curve collapses to a single-valued curve with equa-
tion

A =

√
1− ω2

b
, (8)

plotted as a cyan line in Fig. 1. This is the so-called
backbone approximation to the resonance curve [7,
9]. Within this approximation, the time delay as a
function of the frequency along the backbone curve
is

τ = ω−1 arccos

(
1 + b− ω2

rb

)
. (9)

Although, for the relatively large value of µ con-
sidered in Fig. 1, the backbone curve gives a poor
approximation to the resonance curve; as µ be-
comes smaller the two branches of the latter col-
lapse to the backbone. A measure of this collapse
is provided by computing the frequency of oscilla-
tion suppression, ω0, in the limit of small damping.
Equation (6) yields

ω0 ≈ 1− µ

2

√
r2 − 1, (10)

showing that the width of the resonance curve at its
base (A = 0) is proportional to µ. In this limit, the
time delay for oscillation suppression is still given
by Eq. (7).

ii. Short-delay approximation

Another relevant approximation, which drastically
simplifies the problem of solving Eqs. (2) and (3),
is obtained for small values of τ . In fact, approxi-
mating sinωτ ≈ ωτ and cosωτ ≈ 1 − ω2τ2/2, we
obtain linear equations for A2 and ω2, whose solu-
tions yield

A =

√
2(g − µ)(1 + gτ)− gτ2

2µ(1 + gτ) + bgτ2
(11)

and

ω =

√
2

b(g − µ) + µ

2µ(1 + gτ) + bgτ2
. (12)

The magenta line in Fig. 1 represents these results.
For the parameters of the figure, thus, this is an
excellent approximation along the entire resonance
curve.

IV. Numerical results

As a validation of the analytical results obtained
by means of the approximation considered in sec-
tion II., i.e., neglecting the higher-harmonic contri-
butions to oscillatory motion, we have numerically
solved Eq. (1) for various parameter sets. We have
used a fourth-order Runge-Kutta scheme, with the
only non-standard feature that, due to the delay
in the feedback force, it is necessary to specify the
solution x(t) for all times −τ ≤ t ≤ 0, instead
of the initial condition at t = 0. In all cases, we
have considered a constant value of x(t), hence with
ẋ(t) = 0, in that interval.

For all the parameter sets taken into account in
the numerical calculations, we have found that, af-
ter a transient time which scaled as µ−1, the os-
cillator reached periodic motion. This observation
is in qualitative agreement with our argument of
section II.iii., which predicts stability of periodic
motion under very general conditions.

A more quantitative comparison between theo-
retical and numerical results, illustrated for the pa-
rameter set of Fig. 1, is given in Fig. 3. The main
panel shows, as green dots, numerical measure-
ments of the frequency and amplitude of long-time
periodic motion for various (positive) values of the
delay in the interval 0 ≤ τ ≤ 0.4. The black full line
stands for the theoretical result. The inset shows
the same data in the amplitude-delay plane. We see
that the agreement is generally very good. Not un-
expectedly, the theoretical approximation improves
towards smaller amplitudes, where nonlinear effects
are weaker and periodic motion is better described
by a pure harmonic oscillation, as assumed in sec-
tion II. As a matter of fact, Fig. 3 is limited to
amplitudes above 0.25 since, in the plot, theoreti-
cal and numerical results are indistinguishable for
smaller values.

The agreement between our theoretical and nu-
merical results rises the question to what extent
higher-harmonic components, which are a direct
product of nonlinearity but have been neglected in
our analytical approximation, constitute a substan-
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Figure 3: Theoretical (black line) and numerical
(green dots) results for the amplitude-frequency re-
lation of periodic oscillatory motion, with µ = 0.1,
g = 0.12, and b = 4, and for various values of the
delay in the interval [0, 0.4]. The inset shows the
same data in the amplitude-delay domain. Dotted
green lines have been plotted as a guide to the eye.

tial contribution to oscillatory motion. To evalu-
ate this, we calculate the amplitudes of different
Fourier components in the long-time numerical so-
lution for x(t). With the parameters of Fig. 3 and
τ = 0.1, for which the oscillation amplitude and
frequency are A = 0.428 and ω = 1.303, the first
Fourier amplitude (corresponding to frequency ω)
is A1 = 0.42. Due to the cubic nonlinearity in the
restoring force, in turn, the next significant ampli-
tude corresponds to the third-harmonic component
(frequency 3ω), A3 = 0.0076. Higher-harmonic
amplitudes are even smaller. The first correction
to harmonic motion, thus, is almost two orders
of magnitude weaker than the main contribution,
which reasonably justifies our analytical approxi-
mation. On the other hand, this modest contribu-
tion of higher-harmonic components to the overall
motion markedly contrasts with the sizable phe-
nomenology studied in section II., which is also a
direct consequence of nonlinearity.

V. Conclusions

We have analyzed the dynamics of a mechanical
oscillator whose periodic motion is sustained by a
feedback force proportional to the oscillation veloc-
ity. The key ingredient that makes oscillations sta-
ble is a nonlinear dependence of damping with the
oscillation amplitude, such that energy dissipation
increases or decreases when the amplitude respec-
tively grows or drops. This kind of nonlinearity,
together with a cubic component in the restoring
force, has been experimentally observed to occur
in c-c beam micromechanical oscillators [6], which
can therefore exhibit self-sustained motion under
the action of linear velocity feedback.

Our emphasis was put on the effect of a time de-
lay in the feedback force, assumed to originate in
the electric circuit that reads, conditions, and rein-
jects the oscillation signal. The most significant
consequence of this ingredient is that oscillation can
be suppressed if the delay is large enough. It is well
known that differential equations with time-delayed
terms can exhibit either stationary oscillatory so-
lutions or fixed rest points, depending on the delay
[10]. Also, oscillation suppression (or “death”) due
to delays has been reported to occur in a variety
of dynamical systems, such as synchronized limit-
cycle oscillators [11,12]. Here, this same occurrence
has been characterized for a nonlinear mechanical
system that can become relevant for the design of
micromechanical time-keeping devices.

In connection with possible applications of
this phenomenology, it is worth mentioning that
classical-mechanical models such as Eq. (1) pro-
vide a suitable starting point for the description
of micro- and nanomechanical machines. As length
scales become smaller, however, the effects of ther-
mal fluctuations and electrical noise cannot be fur-
ther ignored [13, 14]. From the viewpoint of our
model, therefore, an important step forward would
be to include noise in the theoretical analysis.
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Czaplewski, D López, Self-sustained microme-
chanical oscillator with linear feedback, Phys.
Rev. Lett. 117, 017203 (2016).

[7] A H Nayfeh, D T Mook, Nonlinear Oscilla-
tions, Wiley, New York (2008).

[8] H B Peng, C W Chang, S Aloni, T D Yuzvin-
sky, A Zettl, Ultrahigh frequency nanotube res-
onators, Phys. Rev. Lett. 97, 087203 (2006).

[9] S I Arroyo, D H Zanette, Duffing revisited:
Phase-shift control and internal resonance in
self-sustained oscillators, Eur. Phys. J. B 89,
12 (2016).

[10] T Erneux, Applied Delay Differential Equa-
tions, Springer, New York (2009).

[11] D V Ramana Reddy, A Sen, G L Johnston,
Time delay induced death in coupled limit cycle
oscillators, Phys. Rev. Lett. 80, 5109 (1998).

[12] S H Strogatz, Death by delay, Nature 394,
316 (1998).

[13] A N Cleland, M L Roukes, Noise processes
in nanomechanical resonators, J. Appl. Phys.
92, 2758 (2002).

[14] P Ward, A Duwel, Oscillator phase noise: sys-
tematic construction of an analytical mode en-
compassing nonlinearity, IEEE Trans. Ultra-
son. Ferroelectr. Freq. Control 58, 195 (2011).

090003-7


