[1] K Otsuka, M Wayman, Shape memory materials, Cambridge University Press, Cambridge (1998).
[2] K. Bhattacharya, Microstructure of matensite: why it forms and how it gives rise to the shape-memodry effect, Oxford University Press, Oxford (2003).
[3] R Stalmans, J Van Humbeeck, K Delaey, Thermomechanical cycling, two way memory and concomitant effects in Cu-Zn-Al alloys, Acta Metall. Mater. 40, 501 (1992).
https://doi.org/10.1016/0956-7151(92)90399-Y
[4] H Xu, S Tan, Calorimetric investigation of a Cu-Zn-Al alloy with two way shape memory, Scripta Metall. Mater. 33, 749 (1995).
https://doi.org/10.1016/0956-716X(95)00269-2
[5] J Perkins, R O Sponholz, Stress-induced martensitic transfomation cycling and the two-way shape memory training in Cu-Zn-Al alloys, Metall. Trans. A 15, 313 (1964).
https://doi.org/10.1007/BF02645117
[6] D Rios Jara, G Guenin, On the characterization and origin of the dislocations associated with the two way memory effect in Cu-Zn-Al thermoelastic alloys-I. Quantitative analysis of the dislocations, Acta Metall. Mater. 35, 109 (1987).
https://doi.org/10.1016/0001-6160(87)90218-5
[7] E Cingolani, M Ahlers, M Sade, The two way shape memory effect in CuZnAl single crystals: role of dislocations and stabilization, Acta Metall. Mater. 43, 2451 (1995).
https://doi.org/10.1016/0956-7151(94)00415-3
[8] E Cingolani, M Ahlers, On the origin of the two way shape memory effect in Cu-Zn-Al single crystals, Mater. Sci. Eng. A 273, 595 (1999).
https://doi.org/10.1016/S0921-5093(99)00436-0
[9] R S Elliott, D S Karls, Entropic stabilization of austenite in shape memory alloys, J. Mech. Phys. Solids 61, 2522 (2013).
https://doi.org/10.1016/j.jmps.2013.07.013
[10] O Kastner, G J Ackland, Mesoscale kinetics produces martensitic microstructure, J. Mech. Phys. Solids 57, 107 (2009).
https://doi.org/10.1016/j.jmps.2008.09.016
[11] O Kastner, G Eggeler, W Weiss, G J Ackland, Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations, J. Mech. Phys. Solids 59, 1888 (2011).
https://doi.org/10.1016/j.jmps.2011.05.009
[12] O Kastner, First Principles Modelling of shape memory alloys: Molecular dynamics simulations, Springer, Berlin (2012).
https://doi.org/10.1007/978-3-642-28619-3
[13] M F Laguna, E A Jagla, Classical isotropic two-body potentials generating martensitic transformations, J. Stat. Mech-Theory E. 2009, P09002 (2009).
https://doi.org/10.1088/1742-5468/2009/09/P09002
[14] M P Allen and D J Tildesley, Computer simulation of liquids, Oxford University Press, Oxford (1987).
[15] M Sade, A Hazarabedian, A Uribarri, F Lovey, An electron-microscopy study of dislocation structures in fatigued Cu-Zn-Al shape-memory alloys, Philos. Mag. 55, 445 (1987).
https://doi.org/10.1080/01418618708209908
[16] F Lovey, A Hazarabedian, J Garces, The relative stability of dislocations embedded in the B phase matrix and in martensite phases in copper based alloys, Acta Metall. Mater. 37, 2321 (1989).
https://doi.org/10.1016/0001-6160(89)90029-1