[1] E Weeks, Soft jammed materials, In: Statistical physics of complex fluids, Eds S Maruyama, M Tokuyama, pag. 2.-1, 87, Tohoku University Press, Sendai (2007).

[2] J B Knight, C G Fandrich, C N Lau, H Jaeger, S R Nagel, Density relaxation in a vibrated granular material, Phys. Rev. E 51, 3957 (1995).
doi:10.1103/PhysRevE.51.3957

[3] A Kudrolli, Size separation in vibrated granular media, Rep. Prog. Phys. 67, 209 (2004).
doi:10.1088/0034-4885/67/3/R01

[4] P Richard, M Nicodemi, R Delannay, P Ribiere, D Bideau, Slow Relaxation and compaction of granular systems, Nature Materials, 4, 121 (2005).
doi:10.1038/nmat1300

[5] D Howell, R Behringer, C Veje, Fluctuations in granular media, Chaos 9, 559 (1999).
doi:10.1063/1.166430

[6] M Toiya, J Stambaugh, W Losert, Transient and oscillatory granular shear flow, Phys. Rev. Lett. 93, 088001 (2004).
doi:10.1103/PhysRevLett.93.088001

[7] M E Cates, J P Wittmer, J-P Bouchaud, P Claudin, Jamming, force chains, and fragile matter, Phys. Rev. Lett. 81, 1841 (1998).
doi:10.1103/PhysRevLett.81.1841

[8] S Ouagenouni, J-N Roux, Compaction of well-coordinated lubricated granular pillings, Europhys. Lett. 32, 449 (1995).
doi:10.1209/0295-5075/32/5/012

[9] S Ouagenouni, J-N Roux, Force distribution in frictionless granular packings at rigidity threshold, Europhys. Lett. 39, 117 (1997).
doi:10.1209/epl/i1997-00324-1

[10] C F Moukarzel, Isostatic Phase transition and instability in stiff granular materials, Phys. Rev. Lett. 81, 1634 (1998).
doi:10.1103/PhysRevLett.81.1634

[11] C F Moukarzel, Granular matter instability: a structural rigidity point of view, Proceedings of Rigidity Theory and Applications (1998).

[12] M Van Hecke, Jamming of soft particles: Geometry, mechanics, scaling and isostaticity, J. Phys.: Condens. Matter 22, 033101 (2010).
doi:10.1088/0953-8984/22/3/033101

[13] F Radjai, De Wolf, M Jean, J J Moreau, Bimodal character of stress transmission in granular packings, Phys. Rev. Lett. 80, 61 (1998).
doi:10.1103/PhysRevLett.80.61

[14] P Claudin, J-P Bouchaud, Static avalanches and giant stress fluctuations in silos, Phys. Rev. Lett. 78, 231 (1997).
doi:10.1103/PhysRevLett.78.231

[15] C Liu, S Nagel, D Schecter, S Coppersmith, S Majumdar, O Narayan, T Witten, Force fluctuations in bead packs, Science 269, 513 (1995).
doi:10.1126/science.269.5223.513
PMid:17842361

[16] S Coppersmith, C Liu, S Majumdar, O Narayan, T Witten, Model for force fluctuations in bead packs, Phys. Rev. E 53, 4673 (1996).
doi:10.1103/PhysRevE.53.4673

[17] C Liu, S Nagel, Sound in sand, Phys. Rev. Lett. 68, 2301 (1992).
doi:10.1103/PhysRevLett.68.2301

[18] C Liu, Spatial patterns of sound propagation in sand, Phys. Rev. B 50, 782 (1994).
doi:10.1103/PhysRevB.50.782

[19] C H Liu, S R Nagel, Sound and vibration in granular materials, J. Phys.: Condens. Matter 6, 433 (1994).
doi:10.1088/0953-8984/6/23A/071

[20] E Clement, Y Serero, J Rajchenbach, J Duran, Fluctuating aspects of the pressure in a granular column, In: Proceedings of the III$^{rd}$ Intern. Conf. on Powders & Grains, Eds. R P Behringer, J T Jenkins, Balkema, Rotterdam (1997).

[21] L Vanel, E Clement, Pressure screening and flutuations at the bottom of a granular column, Eur. Phys. J. B 11, 525 (1999).
doi:10.1007/s100510050965

[22] H A Janssen, Versuche uber getreidedruck in silozellen, Z. Ver. Dtsch. Ing. 39, 1045 (1895).

[23] P-G de Gennes, Thermal expansion effects in a silo, C. R. Acad. Sci. Paris 327, 267 (1999).

[24] D Bonamy, L Laurent, P Claudin, J-P Bouchaud, F Daviaud, Electrical conductance of a 2D packing of mettallic beads under thermal perturbation, Europhys. Lett. 51, 614 (2000).
doi:10.1209/epl/i2000-00382-3

[25] D Bonamy, L Laurent, F Daviaud, Electrical conductance of thermally perturbated packing, In: Powders and grains 2001, Eds. Y Kishino, Pag. 77, Balkema, Rotterdam (2001).

[26] T Divoux, I Vassilief, H Gayvallet, J-C Geminard, Ageing of a granular pile induced by thermal cycling, In: Powders and Grains 2009, AIP Conference Proceedings 1145, 473 (2009).
doi:10.1063/1.3179965

[27] J-C Geminard, H Gayvallet, Thermal conductivity of a partially wet granular material, Phys. Rev. E 64, 041301 (2001).
doi:10.1103/PhysRevE.64.041301

[28] K Chen, J Cole, C Conger, J Draskovic, M Lohr, K Klein, T Scheidemantel, P Schiffer, Packing grains by thermal cycling, Nature 442, 257 (2006).
doi:10.1038/442257a

[29] T Divoux, H Gayvallet, J-C Geminard, Creep motion of a granular pile induced by thermal cycling, Phys. Rev. Lett. 101, 148303 (2008).
doi:10.1103/PhysRevLett.101.148303

[30] K Chen, A Harris, J Draskovic, P Schiffer, Granular fragility under thermal cycles, Granular Matter 11, 237 (2009).
doi:10.1007/s10035-009-0141-7

[31] J-C Geminard, Habilitation a Diriger des Recherches, Universite Joseph Fourier, Grenoble I, p.~32 (2003). Available at http://tel.archives-ouvertes.fr/tel-00294761/fr/

[32] T Divoux, Bruit et fluctuations dans les ecoulements de fluides complexes, Universite de Lyon -- ENS de Lyon (2009). Available at http://tel.archives-ouvertes.fr

[33] W L Vargas, J J McCarthy, Thermal expansion effects and heat conduction in a granular materials, Phys. Rev. E 76, 041301 (2007).
doi:10.1103/PhysRevE.76.041301

[34] A Mehta, G Barker, Vibrated powders: A microscopic approach, Phys. Rev. Lett. 67, 394 (1991).
doi:10.1103/PhysRevLett.67.394

[35] G Barker, A Mehta, Transient phenomena, self diffusion, and orientational effectsin vibrated powders, Phys. Rev. E. 47, 184 (1993).
doi:10.1103/PhysRevE.47.184

[36] J Brujic, P Wang, C Song, D L Johnson O Sindt, H A Makse, Granular dynamics in compaction and stress relaxation, Phys. Rev. Lett. 95, 128001 (2005).
doi:10.1103/PhysRevLett.95.128001

[37] T Scheller, C Huss, G Lumay, N Vandewalle, S Dorbolo, Precursors to avalanches in a granular monolayer, Phys. Rev. E 74, 031311 (2006).
doi:10.1103/PhysRevE.74.031311

[38] J Crassous, J F Metayer, P Richard, C Laroche, Experimental study of a creeping granular flow at very low velocity, J. Stat. Mech. P03009 (2008).
doi:10.1088/1742-5468/2008/03/P03009

[39] S Slotterback, M Toiya, L Goff, J F Douglas, W Losert, Correlation between particle motion and Voronoi-cell-shape fluctuations during the compaction of granular matter, Phys. Rev. Lett. 101, 258001 (2008).
doi:10.1103/PhysRevLett.101.258001

[40] L Djaoui, J Crassous, Probing creep motion in a granular materials with light scattering, Granular Matter 7, 1985 (2005).
doi:10.1007/s10035-005-0210-5

[41] J Crassous, M Erpelding, A Amon, Diffusive waves in a dilating scattering medium, Phys. Rev. Lett. 103, 013903 (2009).
doi:10.1103/PhysRevLett.103.013903

[42] B Utter, R Behringer, Experimental measures of affine and nonaffine deformation in granular shear, Phys. Rev. Lett. 100, 208302 (2008).
doi:10.1103/PhysRevLett.100.208302

[43] A S Keys, A R Abate, S C Glotzer, D J Durian, Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material, Nature Phys. 3, 260 (2007).
doi:10.1038/nphys572

[44] C Donati, J F Douglas, W Kob, S J Plimpton, P H Poole, S C Glotzer, Stringlike cooperative motion in a supercooled liquid, Phys. Rev. Lett. 80, 2338 (1998).
doi:10.1103/PhysRevLett.80.2338

[45] J F Douglas, J Dudowicz, K F Reed, Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids~?, J. Chem. Phys. 125, 144907 (2006).
doi:10.1063/1.2356863

[46] W L Vargas, J J McCarthy, Conductivity of granular media with stagnant interstitial fluids via thermal particle dynamics, Int. J. Heat Mass Transfer 45, 4847 (2002).
doi:10.1016/S0017-9310(02)00175-8

[47] The highest frequency accessible is roughly given by the time $tau equiv sqrt{g/d}$ for a grain to fall freely under gravity over a size equal to its diameter $d$. For $d=1$~mm, one gets: $tau^{-1}simeq 100$~Hz.

[48] Note that the compaction process seems to be controlled both by the acceleration $Gamma$ and by its duration $T=2pi/omega$. Thus, the relevant parameter for tapping experiments may not be $Gamma sim a/T^2$, but rather $Gamma T sim A/T$ as claimed in [93]. However we discuss the results of tapping experiments in terms of $Gamma$ as it is the paramater that has been used in the literature until now to describe the experimental observations.

[49] P Philippe, Etude theorique et experimentale de la densification de milieux granulaires, Universite de Rennes I - (2002). Available at http://tel.archives-ouvertes.fr

[50] A Kabla, G Debregeas, Contact dynamics in a Gently Vibrated Granular Pile, Phys. Rev. Lett. 92, 035501 (2004).
doi:10.1103/PhysRevLett.92.035501

[51] P Umbanhowar, M van Hecke, Force dynamics in weakly vibrated granular packings, Phys. Rev. E 72, 030301 (2005).
doi:10.1103/PhysRevE.72.030301

[52] P Evesque, J Rajchenbach, Instability in a sand heap, Phys. Rev. Lett. 62, 44 (1989).
doi:10.1103/PhysRevLett.62.44

[53] P Philippe, D Bideau, Compaction dynamics of a granular medium under vertical tapping, Europhys. Lett. 60, 677 (2002).
doi:10.1209/epl/i2002-00362-7

[54] P Ribiere, P Philippe, P Richard, R Delannay, D Bideau, Slow compaction of granular systems, J. Phys.: Condens. Matter 17, 2743 (2005).
doi:10.1088/0953-8984/17/24/024

[55] P Krapivsky, E Ben-Naim, Collective properties of adsorption-desorption process, J. Chem. Phys. 100, 6778 (1993).
doi:10.1063/1.467037

[56] E Ben-Naim, J Knight, E Nowak, E Jaeger, S Nagel, Slow relaxation in granular compaction, Physica D 123, 380 (1998).
doi:10.1016/S0167-2789(98)00136-5

[57] E Caglioti, V Loreto, H Herrmann, M Nicodemi, A ``Tetris-like" model for the compaction of dry Granular Media, Phys. Rev. Lett. 79, 1575 (1997).
doi:10.1103/PhysRevLett.79.1575

[58] M Nicodemi, A Coniglio, H. Herrmann, Frustration and flow dynamics in granular packings, Phys. Rev. E 55, 3962 (1997).
doi:10.1103/PhysRevE.55.3962

[59] T Boutreux, P de Gennes, Compaction of granular mixtures: a free volume model, Physica A 244, 59 (1997).
doi:10.1016/S0378-4371(97)00236-7

[60] S Linz, Phenomenological modeling of the compaction dynamics of shaken granular systems, Phys. Rev. E 54, 2925 (1996).
doi:10.1103/PhysRevE.54.2925

[61] S Linz, A. Dohle, Minimal relaxation law for compaction of tapped granular matter, Phys. Rev. E 60, 5737 (1999).
doi:10.1103/PhysRevE.60.5737

[62] Note that $n_f$ follows an Arrhenius-like law with $Gamma$: $n_f propto exp(-Gamma/ Gamma_0)$ [92] which hints to a stronger analogy between vibrated granular piles and glassy systems [4], the reduced acceleration being equivalent to the effective temperature.

[63] P Ribiere, P Richard, R Delannay, D Bideau, M Toiya, W Losert, Effect of rare events on out-of-equilibrium relaxation Phys. Rev. Lett. 95, 268001 (2005).
doi:10.1103/PhysRevLett.95.268001

[64] We have to mention that the results of the compaction dynamics induced by thermal cycling and obtained by numerical simulations were fitted in [33] by the fractional Mittag-Leffler law which is rather similar to the KWW law. However, the steady state packing fraction is obtained over a short number of cycles (roughly 10) and the use of the fractional Mittag-Leffler law seems to be far-fetched as the change in packing fraction presented in Fig.~10 in [33] could easily be fitted by a single (or by the sum of two) exponential(s), or the inverse logarithmic law proposed by Knight et al. [2,4].

[65] S Mazoyer, L Cipelletti, L Ramos, Origin of the slow dynamics and the aging of a soft glass, Phys. Rev. Lett. 97, 238 (2006).
doi:10.1103/PhysRevLett.97.238301

[66] S Mazoyer, L Cipelletti, L Ramos, Direct space investigation of the ultraslow ballistic dynamics of a soft glass, Phys. Rev. E 79, 011501 (2009).
doi:10.1103/PhysRevE.79.011501

[67] L Ramos, L Cipelletti, Intrinsic aging and effective viscosity in the slow dynamics of a soft glass with tunable elasticity, Phys. Rev. Lett. 94, 158301 (2005).
doi:10.1103/PhysRevLett.94.158301

[68] L Ramos, L Cipelletti, Ultraslow dynamics and stress relaxation in the aging of a soft glassy system, Phys. Rev. Lett. 87, 245503 (2001).
doi:10.1103/PhysRevLett.87.245503

[69] A Duri, L Cipelletti, Length scale dependence of dynamical heterogeneity in a colloidal fractal gel, Europhys. Lett. 76, 912 (2006).
doi:10.1209/epl/i2006-10357-4

[70] P Viklander, D Eigenbrod, Stone movements and permeability changes in till caused by freezing and thawing, Cold Reg. Sci. Technol. 31, 151 (2000).
doi:10.1016/S0165-232X(00)00009-4

[71] P Viklander, Laboratory study of stone heave in till exposed to freezing and thawing, Cold Reg. Sci. Technol. 27, 141 (1998).
doi:10.1016/S0165-232X(98)00004-4

[72] E Aharonov, D Sparks, Rigidity phase transition in granular packings, Phys. Rev. E 60, 6890 (1999).
doi:10.1103/PhysRevE.60.6890

[73] E Kolstrup, T Thyrsted, Stone heave field experiment in clayey silt, Geomorphology 117, 90 (2010).
doi:10.1016/j.geomorph.2009.11.011

[74] S Ulrich, M Schroter, H Swinney, Influence of friction on granular segregation, Phys. Rev. E 76, 042301 (2007).
doi:10.1103/PhysRevE.76.042301

[75] L Bocquet, E Charlaix, S Ciliberto, J Crassous, Moisture-induced ageing in granular media and the kinetics of capillary condensation, Nature 396, 735 (1998).
doi:10.1038/25492

[76] L Bocquet, E Charlaix, F Restagno, Physics of humid granular media, CR Physique 3, 207 (2002).
doi:10.1016/S1631-0705(02)01312-9

[77] W Losert, J-C Geminard, S Nasuno, J P Gollub, Mechanisms for slow strengthening in granular materials, Phys. Rev. E 61, 4060 (2000).
doi:10.1103/PhysRevE.61.4060

[78] H Gayvallet, J-C Geminard, Ageing of the avalanche angle in immersed granular matter, Eur. Phys. J. B 30, 369 (2002).
doi:10.1140/epjb/e2002-00391-6

[79] F Villaruel, B Lauderdale, D Mueth, H Jaeger, Compaction of rods: Relaxation and ordering in vibrated, anisotropic granular material, Phys. Rev. E 61, 6914 (2000).
doi:10.1103/PhysRevE.61.6914

[80] G Lumay, N Vandewalle, Compaction of anisotropic granular materials: Experiments and simulations, Phys. Rev. E 70, 051314 (2004).
doi:10.1103/PhysRevE.70.051314

[81] P Ribiere, P Richard, D Bideau, R Delannay, Experimental compaction of anisotropic granular media, Eur. Phys. J. E 16, 415 (2005).
doi:10.1140/epje/i2004-10096-x

[82] G Lumay, N Vandewalle, Experimental study of the compaction dynamics for two-dimensional anisotropic granular materials, Phys. Rev. E 74, 021301 (2006).
doi:10.1103/PhysRevE.74.021301

[83] F Ludewig, S Dorbolo, N Vandewalle, Effect of friction in a toy model of granular compaction, Phys. Rev. E 70, 051304 (2004).
doi:10.1103/PhysRevE.70.051304

[84] N Vandewalle, G Lumay, O Gerasimov, F Ludewig, The influence of grain shape, friction and cohesion on granular compaction dynamics, Eur. Phys. J. E 22, 241 (2007).
doi:10.1140/epje/e2007-00031-0

[85] H Makse, J Brujnic, S Edwards, Statistical mechanics of jammed matter, Eds. H Hinrichsen, D E Wolf, Wiley-VCH, Berlin (2004)

[86] M Schroter, D Goldman, H Swinney, Stationary state volume fluctuations in a granular medium, Phys. Rev. E 71, 030301 (2005).
doi:10.1103/PhysRevE.71.030301

[87] P Ribiere, P Richard, P Philippe, D Bideau, R Delanay, On the existence of stationary state during granular compaction, Eur. Phys. J. E 22, 249 (2007).
doi:10.1140/epje/e2007-00017-x

[88] E R Nowak, J B Knight, E Ben-Naim, H M Jaeger, S R Nagel, Density fluctuations in vibrated granular materials, Phys. Rev. E 57, 1971 (1998).
doi:10.1103/PhysRevE.57.1971

[89] C Josserand, A V Tkachenko, D M Mueth, H M Jaeger, Memory effects in granular materials, Phys. Rev. Lett. 85, 3632 (2000).
doi:10.1103/PhysRevLett.85.3632

[90] P Richard, P Philippe, F Barbe, S Bourles, X Thibault, D Bideau, Analysis by X-ray microtomography of a granular packing undergoing compaction, Phys. Rev. E 68, 020301 (2003).
doi:10.1103/PhysRevE.68.020301

[91] W L Vargas, J J McCarthy, Heat conduction in granular materials, AiChE Journal 47, 1052 (2001).
doi:10.1002/aic.690470511

[92] P Philippe, D Bideau, Granular medium under vertical tapping: Change of compaction and convection dynamics around the liftoff threshold, Phys. Rev. Lett. 91, 104302 (2003).
doi:10.1103/PhysRevLett.91.104302

[93] J Dijksmann, M van Hecke, The role of tap duration for the steady-state density of vibrated granular media, Europhys. Lett. 88, 44001 (2009).
doi:10.1209/0295-5075/88/44001

[94] W L Vargas, J J McCarthy, Stress effects on the conductivity of particulate beds, Chem. Eng. Sci. 57, 3119 (2002).
doi:10.1016/S0009-2509(02)00176-8