[1] P J Di Nenno (Ed.), SFPE Handbook of fire protection engineering, Society of Fire Protection Engineers and National Fire Protection Association, Quincy, Massachusetts (2002).

[2] J Fruin, Pedestrian planning and design. The Metropolitan Association of Urban Designers and Environmental Planners, New York (1971).

[3] IMO Correspondence Group, Interim guidelines for evacuation analyses for new and existing passenger ships, Technical Report MSC/Circ.1033, International Maritime Organization (2002).

[4] SGSA, The green guide guide to safety at sports grounds, HSMO, London (2008). Available at: http://www.safetyatsportsgrounds.org.uk/sites/default/files/publications/green-guide.pdf

[5] Department of The Environment and The Welsh Office, The building regulations, Approved Document B-Section B1, HMSO, London (1992).

[6] S P Hoogendoorn, W Daamen, Pedestrian behavior at bottlenecks, Transport. Sci. 39, 147 (2005).
https://doi.org/10.1287/trsc.1040.0102

[7] T Kretz, A Grunebohm, M Schreckenberg, Experimental study of pedestrian flow through a bottleneck, J. Stat. Mech. P10014 (2006).
https://doi.org/10.1088/1742-5468/2006/10/P10014

[8] A Seyfried, O Passon, B Steffen, M Boltes, T Rupprecht, W Klingsch, New insights into pedestrian flow through bottlenecks, Transport. Sci. 43, 395 (2009).
https://doi.org/10.1287/trsc.1090.0263

[9] W Liao, A Seyfried, J Zhang, M Boltes, X Zheng, Y Zhao, Experimental study on pedestrian flow through wide bottleneck, Transport. Res. Procedia 2, 26 (2014).
https://doi.org/10.1016/j.trpro.2014.09.005

[10] W Liao, A Tordeux, A Seyfried, M Chraibi, K Drzycimski, X Zheng, Y Zhao, Measuring the steady state of pedestrian flow in bottleneck experiments, Physica A 461, 248 (2016).
https://doi.org/10.1016/j.physa.2016.05.051

[11] J Liddle, A Seyfried, W Klingsch, T Rupprecht, A Schadschneider, A Winkens, An experimental study of pedestrian congestions: Influence of bottleneck width and length, arXiv:0911.4350 (2009).

[12] T Rupprecht, W Klingsch, A Seyfried, Influence of geometry parameters on pedestrian flow through bottleneck, In: Pedestrian and Evacuation Dynamics, Eds. R D Peacock, E D Kuligowski, J D Averill, Pag. 71, Springer US (2011).
https://doi.org/10.1007/978-1-4419-9725-8_7

[13] R Nagai, M Fukamachi, T Nagatani, Evacuation of crawlers and walkers from corridor through an exit, Physica A 367, 449 (2006).
https://doi.org/10.1016/j.physa.2005.11.031

[14] P Lin, J Ma, Personal communication (2016).

[15] D Yanagisawa, K Nishinari, Mean-field theory for pedestrian outflow through an exit, Phys. Rev. E 76, 061117 (2007).
https://doi.org/10.1103/PhysRevE.76.061117

[16] T Ezaki, D Yanagisawa, K Nishinari, Pedestrian flow through multiple bottlenecks, Phys. Rev. E 86, 026118 (2012).
https://doi.org/10.1103/PhysRevE.86.026118

[17] J Wu, X Wang, J Chen, G Shu, Y Li, The position of a door can significantly impact on pedestrians' evacuation time in an emergency, Appl. Math. Comput. 258, 29 (2015).
https://doi.org/10.1016/j.amc.2015.01.112

[18] D R Parisi, B M Gilman, H Moldovan, A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions, Physica A 388, 3600 (2009).
https://doi.org/10.1016/j.physa.2009.05.027

[19] D Helbing, I Farkas, T Vicsek, Simulating dynamical features of escape panic, Nature 407, 487 (2000).
https://doi.org/10.1038/35035023

[20] G Baglietto, D R Parisi, Continuous-space automaton model for pedestrian dynamics, Phys. Rev. E. 83, 056117 (2011).
https://doi.org/10.1103/PhysRevE.83.056117

[21] http://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/CivilSecurityTraffic/PedestrianDynamics/Activities/JuPedSim/jupedsimNode.html

[22] https://github.com/JuPedSim/JuPedSim

[23] B Steffen, A Seyfried, Methods for measuring pedestrian density, flow, speed and direction with minimal scatter, Physica A 389, 1902 (2010).
https://doi.org/10.1016/j.physa.2009.12.015