[1] M Tinkham, Introduction to Superconductivity: Second Edition (Dover Books on Physics)(Vol I), Dover Publications INC, New York (2004).

[2] A V Chubukov, Chiral, nematic, and dimer states in quantum spin chains, Phys. Rev. B 44, 4693 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.4693

[3] L Kecke, T Momoi, A Furusaki, Multimagnon bound states in the frustrated ferromagnetic one-dimensional chain, Phys. Rev. B 76, 060407 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.060407

[4] P W Anderson, The resonating valence bond state in la2cuo4 and superconductivity, Science 235, 1196 (1987).
http://dx.doi.org/10.1126/science.235.4793.1196

[5] A Parvej, M Kumar, Degeneracies and exotic phases in an isotropic frustrated spin-1/2 chain, J. Magn. Magn. Mater. 401, 96 (2016).
http://dx.doi.org/10.1016/j.jmmm.2015.10.017

[6] X L Qi, S C Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1057

[7] M Nakamura, Tricritical behavior in the extended hubbard chains, Phys. Rev. B 61, 16377 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.16377

[8] P Sengupta, A W Sandvik, D K Campbell, Bond-order-wave phase and quantum phase transitions in the one-dimensional extended hubbard model, Phys. Rev. B 65, 155113 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.155113

[9] M Kumar, S Ramasesha, Z G Soos, Tuning the bond-order wave phase in the half-filled extended hubbard model, Phys. Rev. B 79, 035102 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035102

[10] M Suzuki (Ed.), Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific, Singapore (1993).

[11] W Kohn, L J Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133

[12] K G Wilson, The renormalization group and critical phenomena, Rev. Mod. Phys. 55, 583 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.583

[13] S R White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.2863

[14] S R White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.10345

[15] U Schollwock, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.259

[16] K A Hallberg, New trends in density matrix renormalization, Adv. Phys. 55, 477 (2006).
http://dx.doi.org/10.1080/00018730600766432

[17] Z G Soos, A Parvej, M Kumar, Numerical study of incommensurate and decoupled phases of spin-1/2 chains with isotropic exchange J1, J2 between first and second neighbors, J. Phys. Condens. Mat. 28, 175603 (2016).
http://dx.doi.org/10.1088/0953-8984/28/17/175603

[18] U Schollwock, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326, 96 (2011).
http://dx.doi.org/10.1016/j.aop.2010.09.012

[19] P Pippan, S R White, H G Evertz, Efficient matrix-product state method for periodic boundary conditions, Phys. Rev. B 81, 081103 (2011).
http://dx.doi.org/10.1103/PhysRevB.81.081103

[20] E Dagotto, T M Rice, Surprises on the way from one- to two-dimensional quantum magnets: The ladder materials, Science 271, 618 (1996).
http://dx.doi.org/10.1126/science.271.5249.618

[21] S Ostlund, S Rommer, Thermodynamic limit of density matrix renormalization, Phys. Rev. Lett. 75, 3537 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3537

[22] F Verstraete, D Porras, J I Cirac, Density matrix renormalization group and periodic boundary conditions: A quantum information perspective, Phys. Rev. Lett. 93, 227205 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.227205

[23] F Verstraete, J I Cirac, J I Latorre, E Rico, M M Wolf, Renormalization-group transformations on quantum states, Phys. Rev. Lett. 94, 140601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.140601

[24] S K Pati, S Ramasesha, Z Shuai, J L Bredas, Dynamical nonlinear optical coefficients from the symmetrized density-matrix renormalization-group method, Phys. Rev. B 59, 14827 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.14827

[25] K A Hallberg, Density-matrix algorithm for the calculation of dynamical properties of low-dimensional systems, Phys. Rev. B 52, R9827 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R9827

[26] I Affleck, D Gepner, H J Schulz, T Ziman, Critical behaviour of spin-s Heisenberg antiferromagnetic chains: analytic and numerical results, J. Phys. A - Math. Gen. 22, 511 (1989).
http://dx.doi.org/10.1088/0305-4470/22/5/015

[27] D Rossini, V Giovannetti, R Fazio, Spin-supersolid phase in Heisenberg chains: A characterization via matrix product states with periodic boundary conditions, Phys. Rev. B 83, 140411 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.140411

[28] D Rossini, V Giovannetti, R Fazio, Stiffness in 1D matrix product states with periodic boundary conditions, J. Stat. Mech. 2011, P05021 (2011).
http://dx.doi.org/10.1088/1742-5468/2011/05/P05021

[29] A W Sandvik, Computational Studies of Quantum Spin Systems, AIP Conf. Proc. 201297, 135 (2010).
http://dx.doi.org/10.1063/1.3518900