[1] B A Bernevig, T L Hughes, S C Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 314, 1757, (2006).
http://dx.doi.org/10.1126/science.1133734
[2] L Fu, C L Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76, 045302 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045302
[3] H Zhang, C X Liu, X L Dai, Z Fang, S C Zhang, Nat. Phys. 5, 438 (2009).
http://dx.doi.org/10.1038/nphys1270
[4] M Koning, S Wiedmann, C Brune, A Roth, H Buhmann, L W Molenkamp, X L Qi, S C Zhang, Quantum spin hall insulator state in hgte quantum wells, Science 318, 766 (2007).
http://dx.doi.org/10.1126/science.1148047
[5] D Hsieh, D Qian, L Wray, Y Xia, Y S Hor, R J Cava, M Z Hasan, A topological dirac insulator in a quantum spin hall phase, Nature 452, 970 (2008).
http://dx.doi.org/10.1038/nature06843
[6] Y Xia, D Qian, L Hsieh, D Wray, A Pal, H Lin, A Bansil, D Grauer, Y S Hor, R J Cava, M Z Hasan, Observation of a large-gap topological-insulator class with a single dirac cone on the surface, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
[7] A Altland, M R Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.1142
[8] A Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009).
http://dx.doi.org/10.1063/1.3149495
[9] S Ryu, A P Schnyder, A Furusaki, A W W Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New Journal of Physics 12, 065010 (2010).
http://dx.doi.org/10.1088/1367-2630/12/6/065010
[10] M Dzero, K Sun, V Galitski, P Coleman. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.106408
[11] M Dzero, K Sun, P Coleman, V Galitski. Theory of topological Kondo insulators, Phys. Rev. B 85, 045130 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045130
[12] M Dzero, J Xia, V Galitski, P Coleman. Topological Kondo Insulators. Annu. Rev. Condens. 7, 249 (2016).
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014749
[13] N Read, D M Newns, On the solution of the Coqblin-Schreiffer Hamiltonian by the large-N expansion technique, J. Phys. C 16, 3273 (1983).
http://dx.doi.org/10.1088/0022-3719/16/17/014
[14] P Coleman, Mixed valence as an almost broken symmetry Phys. Rev. B 35, 5072 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.5072
[15] D M Newns, N Read, Mean-field theory of intermediate valence/heavy fermion systems, Adv.Phys. 36, 799 (1987).
http://dx.doi.org/10.1080/00018738700101082
[16] S Wolgast, C Kurdak, K Sun, J W Allen, D J Kim, Z Fisk, Low-temperature surface conduction in the kondo insulator smb6, Phys. Rev. B 88, 180405 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.180405
[17] X Zhang, N P Butch, P Syers, S Ziemak, R L Greene, J Paglione, Hybridization, inter-ion correlation, and surface states in the kondo insulator smb 6, Phys. Rev. X 3, 011011 (2013).
http://dx.doi.org/10.1103/PhysRevX.3.011011
[18] N Xu et al., Direct observation of the spin texture in smb6 as evidence of the topological kondo insulator, Nat. Commun. 5, 4566 (2014).
http://dx.doi.org/10.1038/ncomms5566
[19] D J Kim, J Xia, Z Fisk, Topological surface state in the Kondo insulator samarium hexaboride, Nat. Mater. 13, 466 (2014).
http://dx.doi.org/10.1038/nmat3913
[20] V A and P Coleman, End states in a one-dimensional topological Kondo insulator in large-n limit, Phys. Rev. B 90, 115147 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.115147
[21] A M Lobos, A O Dobry, V Galitski, Magnetic end states in a strongly interacting one-dimensional topological Kondo insulator, Phys. Rev. X 5, 021017 (2015).
http://dx.doi.org/10.1103/PhysRevX.5.021017
[22] I Affleck, T Kennedy, E H Lieb, H Tasaki, Rigorous results on valence-bond ground states in antiferromagnets, Phys. Rev.Lett. 59, 799 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.799
[23] I Affleck, T Kennedy, E H Lieb, H Tasaki, Valence bond ground states in isotropic quantum antiferromagnets, Commun. Math. Phys. 115, 477 (1988).
http://dx.doi.org/10.1007/BF01218021
[24] T Kennedy, H Tasaki, Hidden z2 × z2 symmetry breaking in haldane gap antiferromagnets, Phys. Rev. B 45, 304 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.304
[25] F Pollmann, A M Turner, E Berg, M Oshikawa, Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B 81, 064439 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.064439
[26] F Pollmann, E Berg, A M Turner, M Oshikawa, Symmetry protection of topological phases in one-dimensional quantum spin systems, Phys. Rev. B 85, 075125 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075125
[27] Z C Gu, X G Wen, Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order, Phys. Rev. B 80, 155131 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.155131
[28] X Chen, Z C Gu, X G Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035107
[29] A Mezio, A M Lobos, A O Dobry, C J Gazza, Haldane phase in one-dimensional topological Kondo insulators, Phys. Rev. B 92, 205128 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.205128
[30] I Hagymasi, O Legeza, Characterization of a correlated topological Kondo insulator in one dimension, Phys. Rev. B 93, 165104 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.165104
[31] O Zachar, S A Kivelson, V J Emery, Exact results for a 1D kondo lattice from bosonization, Phys. Rev. Lett. 77, 1342 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1342
[32] A E Sikkema, I Affleck, S R White, Spin gap in a doped Kondo chain, Phys. Rev. Lett. 79, 929 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.929
[33] O Zachar, A M Tsvelik, One dimensional electron gas interacting with a Heisenberg spin-1/2 chain, Phys. Rev. B 64, 033103 (2001). cond-mat/9909296.
http://dx.doi.org/10.1103/PhysRevB.64.033103
[34] O Zachar, Staggered liquid phases of the one-dimensional Kondo-Heisenberg lattice model, Phys. Rev. B 63, 205104 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.205104
[35] E Berg, E Fradkin, S A Kivelson, Pair-density-wave correlations in the Kondo-Heisenberg model. Phys. Rev. Lett. 105, 146403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.146403
[36] A Dobry, A Jaefari, E Fradkin, Inhomogeneous superconducting phases in the frustrated Kondo-Heisenberg chain, Phys. Rev. B 87, 245102 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.245102
[37] G Y Cho, R Soto-Garrido, E Fradkin, Topological Pair-Density-Wave Superconducting States, Phys. Rev. Letters 113, 256405 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.256405
[38] D G Shelton, A A Nersesyan, A M Tsvelik, Antiferromagnetic spin ladders: Crossover between spin S=1/2 and S=1 chains, Phys. Rev. B 53, 8521 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.8521
[39] A O Gogolin, A A Nersesyan, A M Tsvelik, L Yu, Zero-modes and thermodynamics of disordered spin-1/2 ladders, Nucl. Phys. B 540, 705 (1999).
http://dx.doi.org/10.1016/S0550-3213(98)00776-7
[40] P Lecheminant, E Orignac, Magnetization and dimerization profiles of the cut two-leg spin ladder and spin-1 chain, Phys. Rev. B 65, 174406 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.174406
[41] N J Robinson, F H L Essler, E Jeckelmann, A M Tsvelik, Finite wave vector pairing in doped two-leg ladders, Phys. Rev. B 85, 195103 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195103
[42] V J Emery, Theory of the one-dimensional electron gas}, In: Highly conducting one-dimensional solids, Eds. J T Devreese, R P Evrard, V E van Doren, Pag. 247, Plenum, New York (1979).
http://dx.doi.org/10.1007/978-1-4613-2895-7_6
[43] J Solyom. The fermi gas model of one–dimensional conductors, Adv. in Phys. 28, 201 (1979).
http://dx.doi.org/10.1080/00018737900101375
[44] J von Delft, H Schoeller, Bosonization for beginners — refermionization for experts, Ann. Phys. (N. Y.) 7, 225 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
[45] T Giamarchi, Quantum Physics in One Dimension, Oxford University Press, Oxford (2004).
[46] A O Gogolin, A A Nersesyan, A M Tsvelik, Bosonization and Strongly Correlated Systems, Cambridge University Press, Cambridge (1999).
[47] I Affleck. In E. Brezin and J. Zinn-Justin, editors, Fields, Strings and Critical Phenomena, pag. 563, Elsevier Science, Amsterdam (1988).
[48] Alexander A. Nersesyan, Alexander O. Gogolin, and Fabian H. L. Essler. Incommensurate spin correlations in heisenberg spin-1/2 zig-zag ladders. Phys. Rev. Lett., 81:910, 1998.
http://dx.doi.org/10.1103/PhysRevLett.81.910
[49] U Schollwock, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.259
[50] A Kitaev, J Preskill, Topological Entanglement Entropy, Phys. Rev. Lett. 96, 110404 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.110404
[51] M Levin, X G Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96, 110405 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.110405
[52] T Hirano, Y Hatsugai, Entanglement Entropy of One-dimensional Gapped Spin Chains, Journal of the Physical Society of Japan 76, 074603 (2007).
http://dx.doi.org/10.1143/JPSJ.76.074603
[53] A Auerbach, Interacting Electrons and Quantum Magnetism, Springer, Berlin (1998).