[1] W Diffie, M Hellman, New directions in cryptography, IEEE T Inform. Theory 22, 644 (1976).
[2] W K Wootters, W H Zurek, A single quantum cannot be cloned, Nature 299, 802 (1982).
http://dx.doi.org/10.1038/299802a0
[3] M Planat, H C Rosu, S Perrine, A survey of finite algebraic geometrical structures underlying mutually unbiased quantum measurements, Found. Phys. 36, 1662 (2006).
http://dx.doi.org/10.1007/s10701-006-9079-3
[4] N Gisin, G Ribordy, W Tittel, H Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.145
[5] C H Bennett, G Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014).
http://dx.doi.org/10.1016/j.tcs.2014.05.025
[6] N J Cerf, M Bourennane, A Karlsson, N Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88, 127902 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.127902
[7] C H Bennett, G Brassard, C Crepeau, U M Maurer, Generalized privacy amplification, IEEE T Inform. Theory 41, 1915 (1995).
[8] C H Bennett et al., Experimental quantum cryptography, J. Cryptol. 5, 3 (1992).
http://dx.doi.org/10.1007/BF00191318
[9] A R Dixon et al., Gigahertz decoy quantum key distribution with 1 mbit/s secure key rate, Opt. Express 16, 18790 (2008).
http://dx.doi.org/10.1364/OE.16.018790
[10] P A Hiskett et al., Long-distance quantum key distribution in optical fibre, New J. Phys. 8, 193 (2006).
http://dx.doi.org/10.1088/1367-2630/8/9/193
[11] R Ursin et al., Entanglement-based quantum communication over 144 km, Nat. Phys. 3 481 (2007).
http://dx.doi.org/10.1038/nphys629
[12] I Marcikic et al., Distribution of time-bin entangled qubits over 50 km of optical fiber, Phys. Rev. Lett. 93, 180502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.180502
[13] W T Buttler et al., Practical four-dimensional quantum key distribution without entanglement, Quantum Inf. Comput. 12, 1 (2012).
[14] C H Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3121
[15] H Bechmann-Pasquinucci, W Tittel, Quantum cryptography using larger alphabets, Phys. Rev. A 61, 062308 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.062308
[16] N Lutkenhaus, Security against individual attacks for realistic quantum key distribution, Phys. Rev. A 61, 052304 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.052304
[17] A Acin et al., Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98, 230501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.230501
[18] V Scarani et al., The security of practical quantum key distribution, Rev. Mod. Phys. 81, 1301 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1301
[19] A K Ekert, Quantum cryptography based on bell's theorem, Phys. Rev. Lett. 67, 661 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.661
[20] W Y Hwang, Quantum key distribution with high loss: Toward global secure communication, Phys. Rev. Lett. 91, 057901 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.057901
[21] Y Zhao et al., Experimental quantum key distribution with decoy states, Phys. Rev. Lett. 96, 070502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.070502
[22] Z L Yuan et al., Unconditionally secure one-way quantum key distribution using decoy pulses, Appl. Phys. Lett. 90, 011118 (2007).
http://dx.doi.org/10.1063/1.2430685
[23] Agilent Application Bulletin 78, Low cost fiber-optic links for digital applications up to 155 MBd, Agilent Technologies Inc. (1999).