[1] R P Feynman, There's plenty of room at the bottom, Caltech's Engineering & Science Magazine, Pasadena (1960).

[2] R D Astumian, Making molecules into motors. Sci. Am. 285, 57 (2001).
http://dx.doi.org/10.1038/scientificamerican0701-56

[3] P Reimann, Brownian motors: noisy transport far from equilibrium, Phys. Rep. 361, 57 (2002).
http://dx.doi.org/10.1016/S0370-1573(01)00081-3

[4] P Reimann, P Hanggi, Introduction to the physics of Brownian motors, Appl. Phys. A: Mater. Sci. Process. 75, 169 (2002).
http://dx.doi.org/10.1007/s003390201331

[5] R D Astumian, P Hanggi, Brownian motors, Phys. Today 55, 33 (2002).
http://dx.doi.org/10.1063/1.1535005

[6] J M R Parrondo, B J de Cisneros, Energetics of Brownian motors: a review, Appl. Phys. A 75, 179 (2002).
http://dx.doi.org/10.1007/s003390201332

[7] P Hanggi, F Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81, 387 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.387

[8] F Julicher, A Ajdari, J Prost, Modeling Molecular Motors, Rev. Mod. Phys. 69, 1269 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.1269

[9] M Schliwa, G Woehlke, Molecular motors, Nature 422, 759 (2003).
http://dx.doi.org/10.1038/nature01601

[10] W R Browne, B L Feringa, Making molecular machines work, Nature Nanotech. 1, 25 (2006).
http://dx.doi.org/10.1038/nnano.2006.45

[11] M von Delius, D A Leigh, Walking molecules, Chem. Soc. Rev. 40, 3656 (2011).
http://dx.doi.org/10.1039/c1cs15005g

[12] D Chowdhury, Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist's perspective, Phys. Rep. 529, 1 (2013).
http://dx.doi.org/10.1016/j.physrep.2013.03.005

[13] L Mahadevan, P Matsudaira, Motility powered by supramolecular springs and ratchets, Science 288, 95 (2000).
http://dx.doi.org/10.1126/science.288.5463.95

[14] S Denisov, S Flach, P Hanggi, Tunable transport with broken space-time symmetries, Phys. Rep. 538, 77 (2014).
http://dx.doi.org/10.1016/j.physrep.2014.01.003

[15] R P Feynman, R B Leighton, M Sands, The Feynman Lectures on Physics, Addison-Wesley, MA (1966).

[16] M R von Smoluchowski, Experimentell nachweisbare der ublichen Thermodynamik widersprechende Molekular-phanomene, Physik. Zeitschr. 13, 1069 (1912).

[17] J M R Parrondo, P Espanol, Criticism of Feynman's analysis of the ratchet as an engine, Am. J. Phys. 64, 1125 (1996).
http://dx.doi.org/10.1119/1.18393

[18] R D Astumian, M Bier, Fluctuation driven ratchets: Molecular motors, Phys. Rev. Lett. 72, 1766 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1766

[19] M O Magnasco, Forced thermal ratchets, Phys. Rev. Lett. 71, 1477 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1477

[20] P Reimann, R Bartussek, R Haussler, P Hanggi, Brownian Motors Driven by Temperature Oscillations, Phys. Lett. A 215, 26 (1996).
http://dx.doi.org/10.1016/0375-9601(96)00222-8

[21] J D Bao, Directed current of Brownian ratchet randomly circulating between two thermal sources, Physica A 273, 286 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00274-5

[22] Z C Tu, Z C Ou-Yang, A molecular motor constructed from a double-walled carbon nanotube driven by temperature variation, J. Phys.: Condens. Matter 16, 1287 (2004).
http://dx.doi.org/10.1088/0953-8984/16/8/012

[23] Z C Tu, X Hu, Molecular motor constructed from a double-walled carbon nanotube driven by axially varying voltage, Phys. Rev. B 72, 033404 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.033404

[24] M van den Broeck, C van den Broeck, Chiral brownian heat pump, Phys. Rev. Lett. 100, 130601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.130601

[25] M M Millonas, D R Chialvo, Nonequilibrium fluctuation-induced phase transport in Josephson junctions, Phys. Rev. E 53, 2239 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.2239

[26] The straightforward techniques can be found earlier in H. Risken, The Fokker-Planck Equation, Springer-Verlag (2nd Ed.) (1984).

[27] M M Millonas, Self-consistent microscopic theory of fluctuation-induced transport, Phys. Rev. Lett. 74, 10 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.10

[28] A L R Bug, B J Berne, Shaking-induced transition to a nonequilibrium state, Phys. Rev. Lett. 59, 948 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.948

[29] A Ajdari, J Prost, Mouvement induit par un potentiel periodique de basse symmetrie: dielectrophorese pulsee, C. R. Acad. Sci. Paris Ser. II 315, 1635 (1992).

[30] A V Arzola, K Volke-Sepulveda, J L Mateos, Experimental Control of Transport and Current Reversals in a Deterministic Optical Rocking Ratchet, Phys. Rev. Lett. 106, 168104 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.168104

[31] D R Chialvo, M M Millonas, Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet, Phys. Lett. A 209, 26 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00773-0

[32] M M Millonas, D R Chialvo, Control of voltage-dependent biomolecules via nonequilibrium kinetic focusing, Phys. Rev. Lett. 76, 550 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.550

[33] M C Mahato, A M Jayannavar, Synchronized first-passages in a double-well system driven by an asymmetric periodic field, Phys. Letters A 209, 21 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00772-9

[34] M M Millonas, D A Hanck, Nonequilibrium response spectroscopy and the molecular kinetics of proteins, Phys. Rev. Lett. 80, 401 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.401

[35] M Kostur, J Luczka, Multiple current reversal in Brownian ratchets, Phys. Rev. E 63, 021101 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.021101

[36] S Savel'ev, F Marchesoni, F Nori, Stochastic transport of interacting particles in periodically driven ratchets, Phys. Rev. E 70, 061107 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.061107

[37] Baoquan Ai, Liqiu Wang, Lianggang Liu, Transport reversal in a thermal ratchet, Phys. Rev. E 72, 031101 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.031101

[38] I Derenyi, P Tegzes, T Vicsek, Collective transport in locally asymmetric periodic structures, Chaos 8, 657 (1998).
http://dx.doi.org/10.1063/1.166348

[39] D E Shalom, H Pastoriza, Vortex motion rectification in Josephson junction arrays with a ratchet potential, Phys. Rev. Lett. 94, 177001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.177001

[40] V I Marconi, Rocking ratchets in two-dimensional Josephson networks: collective effects and current reversal, Phys. Rev. Lett. 98, 047006 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.047006

[41] C Kettner, P Reimann, P Hanggi, F Muller, Drift ratchet, Phys. Rev. E 61, 312 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.312

[42] S Matthias, F Muller, Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets, Nature (London) 424, 53 (2003).
http://dx.doi.org/10.1038/nature01736

[43] K Mathwig, F Muller, U Gosele, Particle transport in asymmetrically modulated pores, New J. of Phys. 13, 033038 (2011).
http://dx.doi.org/10.1088/1367-2630/13/3/033038

[44] C Marquet, A Buguin, L Talini, P Silberzan, Rectified motion of colloids in asymmetrically structured channels, Phys. Rev. Lett. 88, 168301 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.168301

[45] D Reguera, A Luque, P S Burada, G Schmid, J M Rubi, P Hanggi, Entropic splitter for particle separation, Phys. Rev. Lett. 108, 020604 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.020604

[46] J H Jacobs, Diffusion processes, p. 68, Springer, New York, (1967).
http://dx.doi.org/10.1007/978-3-642-86414-8

[47] R Zwanzig, Diffusion past an entropy barrier, J. Phys. Chem. 96, 3926 (1992).
http://dx.doi.org/10.1021/j100189a004

[48] G P Suarez, M Hoyuelos, H Martin, Transport in a chain of asymmetric cavities: Effects of the concentration with hard-core interaction, Phys. Rev. E 88, 052136 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.052136

[49] G P Suarez, M Hoyuelos, H Martin, Transport of interacting particles in a chain of cavities: Description through a modified Fick-Jacobs equation, Phys. Rev. E 91, 012135 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.012135

[50] T D Frank, Nonlinear Fokker-Planck equations, p. 280, Springer, Berlin (2005).

[51] C A Kruelle, A Gotzendorfer, R Grochowski, I Rehberg, M Rouijaa, P Walzel, Granular flow and pattern formation on a vibratory conveyor, In Traffic and Granular Flow '05, Eds. A Schadschneider, T Poschel, R Kuhne, M Schreckenberg, D. E. Wolf, Pag. 111, Springer-Verlag, Berlin, Heidelberg (2007).

[52] E M Sloot, N P Kruyt, Theoretical and experimental study of the transport of granular materials by inclined vibratory conveyors, Powder Technology 87, 203 (1996).
http://dx.doi.org/10.1016/0032-5910(96)03091-4

[53] Z Farkas, P Tegzes, A Vukics, T Vicsek, Transitions in the horizontal transport of vertically vibrated granular layers, Phys. Rev. E 60, 7022 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.7022