[1] A Garcimartin, J M Pastor, L M Ferrer, J J Ramos, C Martin-Gomez, I Zuriguel, Flow and clogging of a sheep herd passing through a bottleneck, Phys. Rev. E 91, 022808 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.022808
[2] D Helbing, I J Farkas, P Molnar, T Vicsek, Simulation of pedestrian crowds in normal and evacuation situations, Pedestrian and evacuation dynamics 21, 21 (2002).
[3] D R Parisi, C O Dorso, Microscopic dynamics of pedestrian evacuation, Physica A 354, 606 (2005).
http://dx.doi.org/10.1016/j.physa.2005.02.040
[4] S A Soria, R Josens, D R Parisi, Experimental evidence of the faster is slower effect in the evacuation of ants, Safety Science 50, 1584 (2012).
http://dx.doi.org/10.1016/j.ssci.2012.03.010
[5] M Brust, O Aouane, M Thiebaud, D Flormann, C Verdier, L Kaestner, M W Laschke, H Selmi, A Benyoussef, T Podgorski, G Coupier, C Misbah, C Wagner, The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows, Scientific Reports 4, 4348 (2014).
http://dx.doi.org/10.1038/srep04348
[6] E Altshuler, G Mino, C Perez-Penichet, L del Rio, A Lindner, A Rousselet, E Clement, Flow-controlled densification and anomalous dispersion of E. coli through a constriction, Soft Matter 9, 1864 (2013).
http://dx.doi.org/10.1039/C2SM26460A
[7] P G de Gennes, Granular matter: A tentative view, Rev. Mod. Phys. 71, S374 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.S374
[8] I Zuriguel, Clogging of granular materials in bottlenecks, Pap. Phys. 6, 060014 (2014).
http://dx.doi.org/10.4279/pip.060014
[9] J Tang, R P Behringer, How granular materials jam in a hopper, Chaos 21, 041107 (2011).
http://dx.doi.org/10.1063/1.3669495
[10] P G Lafond, M W Gilmer, C A Koh, E D Sloan, D T Wu, A K Sum, Orifice jamming of fluid-driven granular flow, Phys. Rev. E 87, 042204 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.042204
[11] K To, P-Y Lai, H K Pak, Jamming of granular flow in a two-dimensional hopper, Phys. Rev. Lett. 86, 71 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.71
[12] C Lozano, G Lumay, I Zuriguel, R C Hidalgo, A Garcimartin, Breaking arches with vibrations: The role of defects, Phys. Rev. Lett. 109, 068001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.068001
[13] M J Cordero, L A Pugnaloni, Dynamic transition in conveyor belt driven granular flow, Powder Tech. 272, 290 (2015).
http://dx.doi.org/10.1016/j.powtec.2014.12.017
[14] S Dorbolo, L Maquet, M Brandenbourger, F Ludewig, G Lumay, H Caps, N Vandewalle, S Rondia, M Melard, J van Loon, A Dowson, S Vincent-Bonnieu, Influence of the gravity on the discharge of a silo, Granular Matter 15, 263 (2013).
http://dx.doi.org/10.1007/s10035-013-0403-2
[15] A Garcimartin, I Zuriguel, L A Pugnaloni, A Janda, Shape of jamming arches in two-dimensional deposits of granular materials, Phys. Rev. E 82, 031306 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.031306
[16] C Mankoc, A Janda, R Arevalo, J M Pastor, I Zuriguel, A Garcimartin, D Maza, The flow rate of granular materials through an orifice, Granular Matter 9, 407 (2007).
http://dx.doi.org/10.1007/s10035-007-0062-2
[17] A Janda, I Zuriguel, D Maza, Flow rate of particles through apertures obtained from self-similar density and velocity profiles, Phys. Rev. Lett. 108, 248001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.248001
[18] C Perge, M A Aguirre, P A Gago, L A Pugnaloni, D Le Tourneau, J-C Geminard, Evolution of pressure profiles during the discharge of a silo, Phys. Rev. E 85, 021303 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.021303
[19] W A Beverloo, H A Leniger, J van de Velde, The flow of granular solids through orifices, Chem. Eng. Sci. 15, 260 (1961).
http://dx.doi.org/10.1016/0009-2509(61)85030-6
[20] G Lumay, N Vandewalle, Controlled flow of smart powders, Phys. Rev. E 78, 061302 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.061302
[21] Videos: https://youtu.be/Th5FaJuR7gw for D=0.03m, https://youtu.be/VCWdVEUGbLw for D=0.08m, https://youtu.be/qVQVAjcvQtc for D=0.18m.