[1] W Beverloo, H Leniger, J Van de Velde, The flow of granular solids through orifices, Chem. Eng. Sci. 15, 260 (1961).

[2] R L Brown, J C Richards, Exploratory study of the flow of granules through apertures, Trans. Inst. Chem. Eng. 37, 108 (1959).

[3] T J Wilson, C R Pfeifer, N Mesyngier, D J Durian, Granular discharge rate for submerged hoppers, Papers in Physics 6, 060009 (2014).

[4] C Mankoc, A Janda, R Arevalo, J Pastor, I Zuriguel, A Garcimartin, D Maza, The flow rate of granular materials through an orifice, Granular Matter 9, 407 (2007).

[5] M A Aguirre, J G Grande, A Calvo, L A Pugnaloni, J-C Geminard, Pressure independence of granular flow through an aperture, Phys. Rev. Lett. 104, 238002 (2010).

[6] M A Aguirre, J G Grande, A Calvo, L A Pugnaloni, J-C Geminard, Granular flow through an aperture: Pressure and flow rate are independent, Phys. Rev. E 83, 061305 (2011).

[7] C Perge, M A Aguirre, P A Gago, L A Pugnaloni, D Le Tourneau, J-C Geminard, Evolution of pressure profiles during the discharge of a silo, Phys. Rev. E. 85, 021303 (2012).

[8] L Kondic, Simulations of two dimensional hopper flow, Granular Matter 16, 235 (2014).

[9] R M Nedderman, Statics and kinematics of granular materials, Cambridge University Press, Cambridge (2005).

[10] R L Brown, J C Richards, Principles of powder mechanics: essays on the packing and flow of powders and bulk solids, Pergamon Press Oxford, London (1970).

[11] P W Cleary, M L Sawley, DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge, Appl. Math. Model. 26, 89 (2002).

[12] F Y Fraigea, P A Langston, G Z Chen, Distinct element modelling of cubic particle packing and flow, Powder Technol. 186, 224 (2008).

[13] D Hohner, S Wirtz, V Scherer, A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method, Powder Technol. 226, 16 (2012).

[14] D Hohner, S Wirtz, V Scherer, Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method, Powder Technol. 235, 614 (2013).

[15] P A Langston, M A Al-Awamleh, F Y Fraige, B N Asmar, Distinct element modelling of non-spherical frictionless particle flow, Chem. Eng. Sci. 59, 425 (2004).

[16] J Li, P A Langston, C Webba, T Dyakowskia, Flow of sphero-disc particles in rectangular hoppers: A DEM and experimental comparison in 3D, Chem. Eng. Sci. 59, 5917 (2004).

[17] B Jin, H Tao, W Zhong, Flow. behaviors of non-spherical granules in rectangular hopper, Chinese J. Chem. Eng. 18, 931 (2010).

[18] Box2D Physics Engine, www.box2d.org [19] E Catto, Iterative dynamics with temporal coherence, available at http://box2d.googlecode.com/files/GDC2005 ErinCatto.zip (retrived on October 2010)

[20] M. Benyamine, Discharge flow of a bidisperse granular media from a silo, Phys. Rev. E 90, 032201 (2014).

[21] C M Carlevaro, L A Pugnaloni, Steady state of tapped granular polygons, J. Stat. Mech. P01007 (2011).

[22] Shapely package, https://pypi.python.org/pypi/Shapely

[23] E Azaema, F Radji, J-N. Roux, Internal friction and absence of dilatancy of packings of frictionless polygons, Phys. Rev. E 91, 010202 (2015).

[24] F da Cruz, S Emam, M Prochnow, J N Roux, F Chevoir, Rheophysics of dense granular materials: Discrete simulation of plane shear flows, Phys. Rev. E 72, 021309 (2005).