[1] W Beverloo, H Leniger, J Van de Velde, The flow of granular solids through orifices, Chem. Eng. Sci. 15, 260 (1961).
http://dx.doi.org/10.1016/0009-2509(61)85030-6
[2] R L Brown, J C Richards, Exploratory study of the flow of granules through apertures, Trans. Inst. Chem. Eng. 37, 108 (1959).
[3] T J Wilson, C R Pfeifer, N Mesyngier, D J Durian, Granular discharge rate for submerged hoppers, Papers in Physics 6, 060009 (2014).
http://dx.doi.org/10.4279/pip.060009
[4] C Mankoc, A Janda, R Arevalo, J Pastor, I Zuriguel, A Garcimartin, D Maza, The flow rate of granular materials through an orifice, Granular Matter 9, 407 (2007).
http://dx.doi.org/10.1007/s10035-007-0062-2
[5] M A Aguirre, J G Grande, A Calvo, L A Pugnaloni, J-C Geminard, Pressure independence of granular flow through an aperture, Phys. Rev. Lett. 104, 238002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.238002
[6] M A Aguirre, J G Grande, A Calvo, L A Pugnaloni, J-C Geminard, Granular flow through an aperture: Pressure and flow rate are independent, Phys. Rev. E 83, 061305 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.061305
[7] C Perge, M A Aguirre, P A Gago, L A Pugnaloni, D Le Tourneau, J-C Geminard, Evolution of pressure profiles during the discharge of a silo, Phys. Rev. E. 85, 021303 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.021303
[8] L Kondic, Simulations of two dimensional hopper flow, Granular Matter 16, 235 (2014).
http://dx.doi.org/10.1007/s10035-013-0462-4
[9] R M Nedderman, Statics and kinematics of granular materials, Cambridge University Press, Cambridge (2005).
[10] R L Brown, J C Richards, Principles of powder mechanics: essays on the packing and flow of powders and bulk solids, Pergamon Press Oxford, London (1970).
[11] P W Cleary, M L Sawley, DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge, Appl. Math. Model. 26, 89 (2002).
http://dx.doi.org/10.1016/S0307-904X(01)00050-6
[12] F Y Fraigea, P A Langston, G Z Chen, Distinct element modelling of cubic particle packing and flow, Powder Technol. 186, 224 (2008).
http://dx.doi.org/10.1016/j.powtec.2007.12.009
[13] D Hohner, S Wirtz, V Scherer, A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method, Powder Technol. 226, 16 (2012).
http://dx.doi.org/10.1016/j.powtec.2012.03.041
[14] D Hohner, S Wirtz, V Scherer, Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method, Powder Technol. 235, 614 (2013).
http://dx.doi.org/10.1016/j.powtec.2012.11.004
[15] P A Langston, M A Al-Awamleh, F Y Fraige, B N Asmar, Distinct element modelling of non-spherical frictionless particle flow, Chem. Eng. Sci. 59, 425 (2004).
http://dx.doi.org/10.1016/j.ces.2003.10.008
[16] J Li, P A Langston, C Webba, T Dyakowskia, Flow of sphero-disc particles in rectangular hoppers: A DEM and experimental comparison in 3D, Chem. Eng. Sci. 59, 5917 (2004).
http://dx.doi.org/10.1016/j.ces.2004.07.022
[17] B Jin, H Tao, W Zhong, Flow. behaviors of non-spherical granules in rectangular hopper, Chinese J. Chem. Eng. 18, 931 (2010).
http://dx.doi.org/10.1016/S1004-9541(09)60150-6
[18] Box2D Physics Engine, www.box2d.org
[19] E Catto, Iterative dynamics with temporal coherence, available at http://box2d.googlecode.com/files/GDC2005 ErinCatto.zip (retrived on October 2010)
[20] M. Benyamine, Discharge flow of a bidisperse granular media from a silo, Phys. Rev. E 90, 032201 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.032201
[21] C M Carlevaro, L A Pugnaloni, Steady state of tapped granular polygons, J. Stat. Mech. P01007 (2011).
http://dx.doi.org/10.1088/1742-5468/2011/01/P01007
[22] Shapely package, https://pypi.python.org/pypi/Shapely
[23] E Azaema, F Radji, J-N. Roux, Internal friction and absence of dilatancy of packings of frictionless polygons, Phys. Rev. E 91, 010202 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.010202
[24] F da Cruz, S Emam, M Prochnow, J N Roux, F Chevoir, Rheophysics of dense granular materials: Discrete simulation of plane shear flows, Phys. Rev. E 72, 021309 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.021309