[1] S Edwards, R Oakeshott, Theory of powders, Physica A 157, 1080 (1989).
http://dx.doi.org/10.1016/0378-4371(89)90034-4
[2] S McNamara, P Richard, S K De Richter, G Le Caer, R Delannay, Measurement of granular entropy, Phys. Rev. E 80, 031301 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.031301
[3] M P Ciamarra, A Coniglio, Random very loose packings, Phys. Rev. Lett. 101, 128001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.128001
[4] D Asenjo, F Paillusson, D Frenkel, Numerical calculation of granular entropy, Phys. Rev. Lett. 112, 098002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.098002
[5] C S O'Hern, L E Silbert, A J Liu, S R Nagel, Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. E 68, 011306 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.011306
[6] D Slobinsky, L A Pugnaloni, Arch-based configurations in the volume ensemble of static granular systems, J. Stat. Mech. P02005 (2015).
http://dx.doi.org/10.1088/1742-5468/2015/02/P02005
[7] J Lee, New Monte Carlo algorithm: Entropic sampling, Phys. Rev. Lett. 71, 211 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.211
[8] F Wang, D P Landau, Efficient, multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Lett. 86, 2050 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2050
[10] F Wang, D P Landau, Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram, Phys. Rev. E 64, 056101 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.056101
[11] C Zhou, R N Bhatt, Understanding and improving the Wang-Landau algorithm, Phys. Rev. E 72, 025701 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.025701
[12] S Trebst, D A Huse, M Troyer, Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations, Phys. Rev. E 70, 046701 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.046701
[13] B A Berg, T Neuhaus, Multicanonical ensemble: A new approach to simulate first-order phase transitions, Phys. Rev. Lett. 68, 9 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.9
[14] D P Landau, K Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 2nd ed., Cambridge University Press (2005).
http://dx.doi.org/10.1017/CBO9780511614460
[15] R E Belardinelli, V D Pereyra, Fast algorithm to calculate density of states, Phys. Rev. E 75, 046701 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.046701
[16] M E Newman, G T Barkema, Monte Carlo methods in statistical physics, Vol. 13, pp. 36-42, Clarendon Press Oxford (1999).
[17] L A Pugnaloni, G Barker, A Mehta, Multi-particle structures in non-sequentially reorganized hard sphere deposits, Adv. Complex Syst. 4, 289 (2001).
http://dx.doi.org/10.1142/S0219525901000267
[18] R Arevalo, D Maza, L A Pugnaloni, Identification of arches in two-dimensional granular packings, Phys. Rev. E 74, 021303 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.021303
[19] L A Pugnaloni, M Mizrahi, C M Carlevaro, F Vericat, Nonmonotonic reversible branch in four model granular beds subjected to vertical vibration, Phys. Rev. E 78, 051305 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.051305
[20] J G Puckett, K E Daniels, Equilibrating temperaturelike variables in jammed granular subsystems, Phys. Rev. Lett. 110, 058001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.058001