[1] I De Paul, Evidence of chaotic heat enhancement in a solar still, Appl. Thermal Eng. 29, 1840 (2009).
http://dx.doi.org/10.1016/j.applthermaleng.2008.09.006
[2] O Pauluis, Thermodynamic consistency of the anelastic approximation for a moist atmosphere, J. Atmos. Sci. 65, 2719 (2008).
http://dx.doi.org/10.1175/2007JAS2475.1
[3] O Pauluis, J Schumacher, Idealized moist Rayleigh--Benard convection with piecewise linear equation of state, Commun. Math. Sci. 8, 295 (2010).
http://dx.doi.org/10.4310/CMS.2010.v8.n1.a15
[4] T Weidauer, J Schumacher, Moist turbulent Rayleigh--Benard convection with Neumann and Dirichlet boundary conditions, Phys. Fluids 24, 076604 (2012)
http://dx.doi.org/10.1063/1.4737884
[5] B Fornberg, A practical guide to pseudospectral methods, Cambridge monographs on applied and computational mathematics, Cambridge University Press, Cambridge, UK (1999).
[6] I Mercader, O Batiste, A Alonso, An efficient spectral code for incompressible flows in cylindrical geometries, Computers & Fluids 39, 215 (2010).
http://dx.doi.org/10.1016/j.compfluid.2009.08.003
[7] I Mercader, O Batiste, A Alonso, Continuation of travelling-wave solutions of the Navier--Stokes equations, Int. J. Numer. Meth. Fluids 52, 707 (2006).
http://dx.doi.org/10.1002/fld.1196
[8] A J Chorin, Numerical solution of the Navier--Stokes equations, Math. Comput. 22, 745 (1968).
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
[9] P M Gresho, R L Sani, On the pressure boundary conditions for the incompressible Navier--Stokes equations, Int. J. Numer. Meth. Fluids 7, 1111 (1987).
http://dx.doi.org/10.1002/fld.1650071008
[10] R L Sani, J Shen, O Pironneau, P M Gresho, Pressure boundary condition for the time-dependent incompressible Navier--Stokes equations, Int. J. Numer. Meth. Fluids 50, 673 (2006).
http://dx.doi.org/10.1002/fld.1062
[11] V Fuka, PoisFFT - A free parallel fast Poisson solver, Appl. Math. Comput., 267, 356 (2015).
http://dx.doi.org/10.1016/j.amc.2015.03.011
[12] E Braverman, M Israeli, A Averbuch, L Vozovoiy, A fast 3D Poisson Solver of arbitrary order accuracy, J. Comput. Phys. 144, 109 (1988).
http://dx.doi.org/10.1006/jcph.1998.6001
[13] P M Gresho, D F Griffiths, D J Silvester, Adaptive time-stepping for incompressible flow. Part I: Scalar advection-diffusion, SIAM J. Sci. Comput. 30, 2018 (2008).
http://dx.doi.org/10.1137/070688018
[14] P M Gresho, D F Griffiths, D J Silvester, Adaptive time-stepping for incompressible flow. Part II: Navier--Stokes equations, SIAM J. Sci. Comput. 32, 111 (2010).
http://dx.doi.org/10.1137/080728032
[15] Y Saad, M H Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Comput. 7, 856 (1986).
http://dx.doi.org/10.1137/0907058
[16] L D Landau, E M Lifshitz, Fluid mechanics, Pergamon Press, Oxford (1959).
[17] M C Cross, P C Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.851
[18] H von Helmholtz, Uber integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen, Celles J. 55, 25 (1858).
http://dx.doi.org/10.1515/crll.1858.55.25
[19] W H Press, S A Teukolsky, W T Vetterling, B P Flannery, Numerical recipes, Cambridge University Press, Cambridge, UK (1996).