[1] J L Lebowitz, Boltzmann's entropy and time's arrow, Phys. Today 46, 32 (1993).
http://dx.doi.org/10.1063/1.881363
[2] J L Lebowitz, Statistical mechanics: A selective review of two central issues, Rev. Mod. Phys. Supplement 71, 346 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.S346
[3] E Fermi, J Pasta, S Ulam, Studies of nonlinear problems, LASL Report LA1940 5, 977 (1955).
[4] E Fermi, Collected Pppers: United States 1939-1954, Vol. 2, University of Chicago Press (1965).
[5] G P Berman, F M Izrailev, The Fermi-Pasta-Ulam problem: Fifty years of progress, Chaos 15, 015104 (2005).
http://dx.doi.org/10.1063/1.1855036
[6] B V Chirikov, Resonance processes in magnetic traps, J. Nucl. Energy C 1, 253 (1960).
http://dx.doi.org/10.1088/0368-3281/1/4/311
[7] F M Izrailev, B V Chirikov, Statistical properties of a nonlinear string, Sov. Phys. Dokl. 11, 30 (1966).
[8] G M Zaslavsky, Chaotic dynamics and the origin of statistical laws, Phys. Today 52, 39 (1999).
http://dx.doi.org/10.1063/1.882777
[9] S Goldstein, J L Lebowitz, R Tumulka, N Zanghi, Long-time behavior of macroscopic quantum systems. Commentary accompanying the English translation of John von Neumann's 1929 article on the quantum ergodic theorem, Eur. Phys. J. H 35, 173 (2010).
http://dx.doi.org/10.1140/epjh/e2010-00007-7
[10] J von Neumann, Proof of the ergodic theorem and the H-theorem in quantum mechanics. Translation of: Beweis des ergodensatzes und des H-theorems in der neuen mechanik, Eur. Phys. J. H 35, 201 (2010).
http://dx.doi.org/10.1140/epjh/e2010-00008-5
[11] R A Jalabert, H M Pastawski, Environment-independent decoherence rate in classically chaotic systems, Phys. Rev. Lett. 86, 2490 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2490
[12] P R Levstein, G Usaj, H M Pastawski, Attenuation of polarization echoes in nuclear magnetic resonance: A study of the emergence of dynamical irreversibility in many-body quantum systems, J. Chem. Phys. 108, 2718 (1998).
http://dx.doi.org/10.1063/1.475664
[13] A Goussev, R A Jalabert, H M Pastawski, D Wisniacki, Loschmidt echo, Scholarpedia 7, 11687 (2012).
http://dx.doi.org/10.4249/scholarpedia.11687
[14] P R Zangara, A D Dente, P R Levstein, H M Pastawski, Loschmidt echo as a robust decoherence quantifier for many-body systems, Phys. Rev. A 86 012322 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.012322
[15] Ph Jacquod, C Petitjean, Decoherence, entanglement and irreversibility in quantum dynamical systems with few degrees of freedom, Adv. in Phys. 58, 67 (2009).
http://dx.doi.org/10.1080/00018730902831009
[16] H M Pastawski, P R Levstein, G Usaj, J Raya, J Hirschinger, A nuclear magnetic resonance answer to the Boltzmann-Loschmidt controversy? Physica A 283, 166 (2000).
http://dx.doi.org/10.1016/S0378-4371(00)00146-1
[17] G Usaj, H M Pastawski, P R Levstein, Gaussian to exponential crossover in the attenuation of polarization echoes in NMR, Mol. Phys. 95, 1229 (1998).
http://dx.doi.org/10.1080/00268979809483253
[18] T Kinoshita, T Wenger, D S Weiss, A quantum Newton's cradle, Nature 440, 900 (2006).
http://dx.doi.org/10.1038/nature04693
[19] S Trotzky, Y-A Chen, A Flesch, I P McCulloch, U Schollwock, J Eisert, I Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas, Nat. Phys. 8, 325 (2012).
http://dx.doi.org/10.1038/nphys2232
[20] A Polkovnikov, K Sengupta, A Silva, M Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.863
[21] D M Basko, I L Aleiner, B L Altshuler, Metal insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys. New York 321, 1126 (2006).
http://dx.doi.org/10.1016/j.aop.2005.11.014
[22] I L Aleiner, B L Altshuler, G V Shlyapnikov, A finite-temperature phase transition for disordered weakly interacting bosons in one dimension, Nat. Phys. 6, 900 (2010).
http://dx.doi.org/10.1038/nphys1758
[23] N F Mott, Metal-insulator transition, Rev. Mod. Phys. 40, 677 (1968).
http://dx.doi.org/10.1103/RevModPhys.40.677
[24] P W Anderson, Local moments and localized states, Rev. Mod. Phys. 50, 191 (1978).
http://dx.doi.org/10.1103/RevModPhys.50.191
[25] S Popescu, A J Short, A Winter, Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754 (2006).
http://dx.doi.org/10.1038/nphys444
[26] M Rigol, V Dunjko, M Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
http://dx.doi.org/10.1038/nature06838
[27] V Oganesyan, D A Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155111
[28] M Znidaric, T Prosen, P Prelovsek, Many-body localization in the Heisenberg XXZ magnet in a random field, Phys. Rev. B 77, 064426 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.064426
[29] A Pal, D A Huse, Many-body localization phase transition, Phys. Rev. B 82, 174411 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.174411
[30] J H Bardarson, F Pollmann, J E Moore, Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett. 109, 017202 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.017202
[31] A De Luca, A Scardicchio, Ergodicity breaking in a model showing many-body localization, Europhys. Lett. 101, 37003 (2013).
http://dx.doi.org/10.1209/0295-5075/101/37003
[32] D Pekker, G Refael, E Altman, E Demler, V Oganesyan, The Hilbert-glass transition: new universality of temperature-tuned many-body dynamical quantum criticality, Phys. Rev. X 4, 011052 (2014).
http://dx.doi.org/10.1103/PhysRevX.4.011052
[33] T Giamarchi, H J Schulz, Anderson localization and interactions in one-dimensional metals, Phys. Rev. B 37, 325 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.325
[34] C A Doty, D S Fisher, Effects of quenched disorder on spin-1/2 quantum XXZ chains, Phys. Rev. B 45, 2167 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.2167
[35] J Kimball, Comments on the interplay between Anderson localisation and electron-electron interactions, J. Phys. C Solid State 14, L1061 (1981).
http://dx.doi.org/10.1088/0022-3719/14/33/006
[36] H M Pastawski, G Usaj, P R Levstein, Quantum interference phenomena in the local polarization dynamics of mesoscopic systems: an NMR observation, Chem. Phys. Lett. 261, 329 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00978-5
[37] Z L Madi, B Brutscher, T Schulte-Herbruggen, R Bruschweiler, R R Ernst, Time-resolved observation of spin waves in a linear chain of nuclear spins, Chem. Phys. Lett. 268, 300 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00194-2
[38] E P Danieli, H M Pastawski, P R Levstein, Spin projection chromatography, Chem. Phys. Lett. 384, 306 (2004).
http://dx.doi.org/10.1016/j.cplett.2003.11.104
[39] B Kramer, A MacKinnon, Localization: Theory and experiment, Rep. Prog. Phys. 56, 1469 (1993).
http://dx.doi.org/10.1088/0034-4885/56/12/001
[40] G A Alvarez, E P Danieli, P R Levstein, H M Pastawski, Quantum parallelism as a tool for ensemble spin dynamics calculations, Phys. Rev. Lett. 101, 120503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.120503
[41] S Zhang, B H Meier, R R Ernst, Polarization echoes in NMR, Phys. Rev. Lett. 69, 2149 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.2149
[42] P Cappellaro, Implementation of state transfer Hamiltonians in spin chains with magnetic resonance techniques, In: Quantum State Transfer and Network Engineering, Eds. G M Nikolopoulos, I Jex, Pag. 183-222, Springer Berlin Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-642-39937-4_6
[43] W-K Rhim, A Pines, J S Waugh, Time-reversal experiments in dipolar-coupled spin systems, Phys. Rev. B 3, 684 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.684
[44] E Rufeil-Fiori, C M Sanchez, F Y Oliva, H M Pastawski, P R Levstein, Effective one-body dynamics in multiple-quantum NMR experiments, Phys. Rev. A 79, 032324 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.032324
[45] G A Alvarez, D Suter, R Kaiser, Experimental observation of a phase transition in the evolution of many-body systems with dipolar interactions, arXiv:1409.4562 (2014).
[46] H M Pastawski, P R Levstein, G Usaj, Quantum dynamical echoes in the spin diffusion in mesoscopic systems, Phys. Rev. Lett. 75, 4310 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4310
[47] L J Fernandez-Alcazar, H M Pastawski, Decoherent time-dependent transport beyond the Landauer-Buttiker formulation: A quantum-drift alternative to quantum jumps, Phys. Rev. A 91, 022117 (2015).
http://dx.doi.org/10.1103/PhysRevA.91.022117
[48] E Abrahams, P W Anderson, D C Licciardello, T V Ramakrishnan, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42, 673 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.673
[49] J M Ziman, Localization of electrons in ordered and disordered systems ii. Bound bands, J. Phys. C Solid State 2, 1230 (1969).
http://dx.doi.org/10.1088/0022-3719/2/7/316
[50] E P Danieli, G A Alvarez, P R Levstein, H M Pastawski, Quantum dynamical phase transition in a system with many-body interactions, Solid State Commun. 141, 422 (2007).
http://dx.doi.org/10.1016/j.ssc.2006.11.001
[51] M B Franzoni, P R Levstein, Manifestations of the absence of spin diffusion in multipulse NMR experiments on diluted dipolar solids, Phys. Rev. B 72, 235410 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.235410
[52] S W Morgan, V Oganesyan, G S Boutis, Multispin correlations and pseudothermalization of the transient density matrix in solid-state NMR: Free induction decay and magic echo, Phys. Rev. B 86, 214410 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.214410
[53] J Zhang, F M Cucchietti, C M Chandrashekar, M Laforest, C A Ryan, M Ditty, A Hubbard, J K Gamble, R Laflamme, Direct observation of quantum criticality in Ising spin chains, Phys. Rev. A 79, 012305 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.012305
[54] G A Alvarez, D Suter, NMR quantum simulation of localization effects induced by decoherence, Phys. Rev. Lett. 104, 230403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.230403