[1] H D I Abarbanel, Analysis of observed chaotic data, Springer-Verlag, New York (1996).
http://dx.doi.org/10.1007/978-1-4612-0763-4
[2] A N Kolmogorov, A new metric invariant for transitive dynamical systems and automorphisms in lebesgue sapces, Dokl. Akad. Nauk. (USSR) 119, 861 (1959).
[3] Y G Sinai, On the concept of entropy for a dynamical system, Dokl. Akad. Nauk. (USSR) 124, 768 (1959).
[4] A R Osborne, A Provenzale, Finite correlation dimension for stochastic systems with power-law spectra, Physica D 35, 357 (1989).
http://dx.doi.org/10.1016/0167-2789(89)90075-4
[5] H Kantz, T Scheiber, Nonlinear time series analysis, Cambridge University Press, Cambridge, UK (2002).
[6] O A Rosso, H A Larrondo, M T Martin, A Plastino, M A Fuentes, Distinguishing noise from chaos, Phys. Rev. Lett. 99, 154102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.154102
[7] O A Rosso, L C Carpi, P M Saco, M Gomez Ravetti, A Plastino, H A Larrondo, Causality and the entropy-complexity plane: Robustness and missing ordinal patters, Physica A 391, 42 (2012).
http://dx.doi.org/10.1016/j.physa.2011.07.030
[8] O A Rosso, L C Carpi, P M Saco, M Gomez Ravetti, H A Larrondo, A Plastino, The Amigo paradigm of forbidden/missing patterns: A detailed analysis, Eur. Phys. J. B 85, 419 (2012).
http://dx.doi.org/10.1140/epjb/e2012-30307-8
[9] O A Rosso, F Olivares, L Zunino, L De Micco, A L L Aquino, A Plastino, H A Larrondo, Characterization of chaotic maps using the permutation Bandt--Pompe probability distribution, Eur. Phys. J. B 86, 116 (2013).
http://dx.doi.org/10.1140/epjb/e2013-30764-5
[10] F Olivares, A Plastino, O A Rosso, Ambiguities in Bandt--Pompe's methodology for local entropic quantifiers, Physica A, 391, 2518 (2012).
http://dx.doi.org/10.1016/j.physa.2011.12.033
[11] F Olivares, A Plastino, O A Rosso, Contrasting chaos with noise via local versus global information quantifiers, Phys. Lett A 376, 1577 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.03.039
[12] C Bandt, B Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett. 88, 174102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.174102
[13] M Zanin, L Zunino, O A Rosso, D Papo, Permutation entropy and its main biomedical and econophysics applications: A review, Entropy 14, 1553 (2012).
http://dx.doi.org/10.3390/e14081553
[14] C Vignat, J F Bercher, Analysis of signals in the Fisher-Shannon information plane, Phys. Lett. A 312, 27 (2003).
http://dx.doi.org/10.1016/S0375-9601(03)00570-X
[15] C Shannon, W Weaver, The mathematical theory of communication, University of Illinois Press, Champaign, USA (1949).
[16] R A Fisher, On the mathematical foundations of theoretical statistics, Philos. Trans. R. Soc. Lond. Ser. A 222, 309 (1922).
http://dx.doi.org/10.1098/rsta.1922.0009
[17] B R Frieden, Science from Fisher information: A Unification, Cambridge University Press, Cambridge, UK (2004).
http://dx.doi.org/10.1017/CBO9780511616907
[18] P Sanchez-Moreno, R J Yanez, J S Dehesa, Discrete densities and Fisher information, In: Proceedings of the 14th International Conference on Difference Equations and Applications, Eds. M. Bohner, et al., Pag. 291, UgurBahcesehir University Publishing Company, Istanbul, Turkey (2009).
[19] J C Sprott, Chaos and time series analysis, Oxford University Press, New York, USA (2003).
[20] H A Larrondo, Matab program: noisefk.m (http://www.mathworks.com/matlabcentral/fileexchange/35381) (2012).
[21] M Matsumoto, T Nishimura, Mersenne twister: A 623-dimensionally uniform pseudo-random number gererator, ACM T. Model. Comput. S. 8, 3 (1998).
[22] http://www.keithschwarz.com/interesting/code/factoradic-permutation/FactoradicPermutation.hh.html