[1] A Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge (1997).

[2] L Glass, M C Mackey, From Clocks to Chaos: The Rhythms of Life, Princeton University Press, Princeton (1988).

[3] Y Liu, N F Tsinoremas, C H Johnson, N V Lebedeva, S S G M Ishiura, T Kondo, Circadian orchestration of gene expression in cyanobacteria, Gene. Dev. 9, 1469 (1995).
http://dx.doi.org/10.1101/gad.9.12.1469

[4] E Nagoshi, C Saini, C Bauer, T Laroche, F Naef, U Schibler, Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells, Cell 119, 693 (2004).
http://dx.doi.org/10.1016/j.cell.2004.11.015

[5] I Mihalcescu, W Hsing, S Leibler, Resilient circadian oscillator revealed in individual cyanobacteria, Nature 430, 81 (2004).
http://dx.doi.org/10.1038/nature02533

[6] A Goldbeter, C Gerard, D Gonze, J C Leloup, G Dupont, Systems biology of cellular rhythms, FEBS Lett. 586, 2955 (2012).
http://dx.doi.org/10.1016/j.febslet.2012.07.041

[7] I Palmeirim, D Henrique, D Ish-Horowicz, O Pourquie, Avianhairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis, Cell 91, 639 (1997).
http://dx.doi.org/10.1016/S0092-8674(00)80451-1

[8] A Aulehla, W Wiegraebe, V Baubet, M B Wahl, C Deng, M Taketo, M Lewandoski, O Pourquie, A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation, Nat. Cell Biol. 10, 186 (2008).
http://dx.doi.org/10.1038/ncb1679

[9] Y Masamizu, T Ohtsuka, Y Takashima, H Nagahara, Y Takenaka, K Yoshikawa, H Okamura, R Kageyama, Real-time imaging of the segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells, Proc. Natl. Acad. Sci. USA 103, 1313 (2006).
http://dx.doi.org/10.1073/pnas.0508658103

[10] A J Krol, D Roellig, M L Dequeante, O Tassy, E Glynn, G Hattem, A Mushegian, A C Oates, O Pourquie, Evolutionary plasticity of segmentation clock networks, Development 138, 2783 (2011).
http://dx.doi.org/10.1242/dev.063834

[11] H Shimojo, T Ohtsuka, R Kageyama, Oscillations in notch signaling regulate maintenance of neural progenitors, Neuron 58, 52 (2008).
http://dx.doi.org/10.1016/j.neuron.2008.02.014

[12] N Geva-Zatorsky, N Rosenfeld, S Itzkovitz, R Milo, A Sigal, E Dekel, T Yarnitzky, Y Liron, P Polak, G Lahav, U Alon, Oscillations and variability in the p53 system, Mol. Syst. Biol. 2, 2006.0033 (2006).

[13] M B Elowitz, S Leibler, A synthetic oscillatory network of transcriptional regulators, Nature 403, 335 (2000).
http://dx.doi.org/10.1038/35002125

[14] J Stricker, S Cookson, M R Bennett, W H Mather, L S Tsimring, J Hasty, A fast, robust and tunable synthetic gene oscillator, Nature 456, 516 (2008).
http://dx.doi.org/10.1038/nature07389

[15] J J Tyson, Computational cell biology, Chap. 9, Pag. 230, Springer, Berlin (2002).

[16] B Alberts, A Johnson, J Lewis, M Raff, K Roberts, P Walter, Molecular biology of the cell, 4th Ed., Garland Science, New York (2002).

[17] U Alon, An introduction to systems biology: Design principles of biological circuits, Chapman & Hall/CRC Press, Boca Raton, Florida (2006).

[18] B Novak, J J Tyson, Design principles of biochemical oscillators, Nat. Rev. Mol. Cell Biol. 9, 981 (2008).
http://dx.doi.org/10.1038/nrm2530

[19] J Lewis, Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator, Curr. Biol. 13, 1398 (2003).
http://dx.doi.org/10.1016/S0960-9822(03)00534-7

[20] L G Morelli, F Julicher, Precision of genetic oscillators and clocks, Phys. Rev. Lett. 98, 228101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.228101

[21] J E Ferrell, Q&A: Cooperativity, J. Biol. 8, 53 (2009).
http://dx.doi.org/10.1186/jbiol157

[22] O Pourquie, Vertebrate segmentation: From cyclic gene networks to scoliosis, Cell 145, 650 (2011).
http://dx.doi.org/10.1016/j.cell.2011.05.011

[23] A C Oates, L G Morelli, S Ares, Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock, Development 139, 625 (2012).
http://dx.doi.org/10.1242/dev.063735

[24] Y Saga, The synchrony and cyclicity of developmental events, Cold Spring Harb. Perspect. Biol. 4, a008201 (2012).
http://dx.doi.org/10.1101/cshperspect.a008201

[25] D Roellig, L G Morelli, S Ares, F Julicher, A C Oates, Snapshot: The segmentation clock, Cell 145, 800 (2011).
http://dx.doi.org/10.1016/j.cell.2011.05.007

[26] Y Saga, The mechanism of somite formation in mice, Curr. Opin. Genet. Dev. 22, 331 (2012).
http://dx.doi.org/10.1016/j.gde.2012.05.004

[27] A C Oates, R K Ho, Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish, Development 129, 2929 (2002).

[28] H Hirata, S Yoshiura, T Ohtsuka, Y Bessho, T Harada, K Yoshikawa, R Kageyama, Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop, Science 298, 840 (2002).
http://dx.doi.org/10.1126/science.1074560

[29] S A Holley, D Julich, G J Rauch, R Geisler, C Nusslein-Volhard, her1 and thenotch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis, Development 129, 1175 (2002).

[30] K Takebayashi, Y Sasai, Y Sakai, T Watanabe, S Nakanishi, R Kageyama, Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor hes-1. negative autoregulation through the multiple n box elements, J. Biol. Chem. 269, 5150 (1994).

[31] Y Bessho, G Miyoshi, R Sakata, R Kageyama, Hes7: A bhlh-type repressor gene regulated by notch and expressed in the presomitic mesoderm, Genes Cells 6, 175 (2001).
http://dx.doi.org/10.1046/j.1365-2443.2001.00409.x

[32] C Schroter, S Ares, L G Morelli, A Isakova, K Hens, D Soroldoni, M Gajewski, F Julicher, S J Maerkl, B Deplancke, A C Oates, Topology and dynamics of the zebrafish segmentation clock core circuit, PLoS Biol. 10, e1001364 (2012).
http://dx.doi.org/10.1371/journal.pbio.1001364

[33] A Trofka, J Schwendinger-Schreck, T Brend, W Pontius, T Emonet, S A Holley, The Her7 node modulates the network topology of the zebrafish segmentation clock via sequestration of the Hes6 hub, Development 139, 940 (2012).
http://dx.doi.org/10.1242/dev.073544

[34] A Hanisch, M V Holder, S Choorapoikayil, M Gajewski, E M Ozbudak, J Lewis, The elongation rate of RNA polymerase ii in zebrafish and its significance in the somite segmentation clock, Development 140, 444 (2013).
http://dx.doi.org/10.1242/dev.077230

[35] F Giudicelli, E M Ozbudak, G J Wright, J Lewis, Setting the tempo in development: An investigation of the zebrafish somite clock mechanism, PLoS Biol. 5, 1309 (2007).
http://dx.doi.org/10.1371/journal.pbio.0050150

[36] E M Ozbudak, J Lewis, Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries, PLoS Genet. 4(2), e15 (2008).
http://dx.doi.org/10.1371/journal.pgen.0040015

[37] Y Harima, Y Takashima, Y Ueda, T Ohtsuka, R Kageyama, Accelerating the tempo of the segmentation clock by reducing the number of introns in the hes7 gene, Cell Rep. 3, 1 (2013).
http://dx.doi.org/10.1016/j.celrep.2012.11.012

[38] J Keener, J Sneyd, Mathematical physiology I: Cellular physiology, 2nd Ed. Springer, Berlin (2008).

[39] H Qian, Cooperativity in cellular biochemical processes: Noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses, Ann. Rev. Biophys. 41, 179 (2012).
http://dx.doi.org/10.1146/annurev-biophys-050511-102240

[40] S Zeiser, H V Liebscher, H Tiedemann, I Rubio-Aliaga, G K H Przemeck, M H de Angelis, G Winkler, Number of active transcription factor binding sites is essential for the hes7 oscillator, Theor. Biol. Med. Model. 3, 11 (2006).
http://dx.doi.org/10.1186/1742-4682-3-11

[41] J Gunawardena, Multisite protein phosphorylation makes a good threshold but can be a poor switch, P. Natl. Acad. Sci. USA 102, 14617 (2005).
http://dx.doi.org/10.1073/pnas.0507322102

[42] V Gotea, A Visel, J M Westlund, M A Nobrega, L A Pennacchio, I Ovcharenko, Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers, Genome Res. 20, 565 (2010).
http://dx.doi.org/10.1101/gr.104471.109

[43] D S Burz, R Rivera-Pomar, H Jackle, S D Hanes, Cooperative dna-binding by bicoid provides a mechanism for threshold-dependent gene activation in the drosophila embryo, EMBO J. 17, 5998 (1998).
http://dx.doi.org/10.1093/emboj/17.20.5998

[44] T Brend, S A Holley, Expression of the oscillating gene her1 is directly regulated by hairy/enhancer of split, t-box, and suppressor of hairless proteins in the zebrafish segmentation clock, Dev. Dynam. 238, 2745 (2009).
http://dx.doi.org/10.1002/dvdy.22100

[45] D Soroldoni, personal communication (2014).

[46] L Bintu, N E Buchler, H G Garcia, U Gerland, T Hwa, J Kondev, R Phillips, Transcriptional regulation by the numbers: Models, Curr. Opin. Genet. Dev. 15, 116 (2005).
http://dx.doi.org/10.1016/j.gde.2005.02.007

[47] H G Garcia, A Sanchez, T Kuhlman, J Kondev, R Phillips, Transcription by the numbers redux: experiments and calculations that surprise, Trends Cell Biol. 20, 723 (2010).
http://dx.doi.org/10.1016/j.tcb.2010.07.002

[48] N A M Monk, Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays, Curr. Biol. 13, 1409 (2003).
http://dx.doi.org/10.1016/S0960-9822(03)00494-9

[49] M H Jensen, K Sneppen, G Tiana, Sustained oscillations and time delays in gene expression of protein Hes1, FEBS Lett. 541, 176 (2003).
http://dx.doi.org/10.1016/S0014-5793(03)00279-5

[50] O Cinquin, Repressor dimerization in the zebrafish somitogenesis clock, PLoS Comp. Biol. 3, e32 (2007).
http://dx.doi.org/10.1371/journal.pcbi.0030032

[51] A Ay, S Knierer, A Sperlea, J Holland, E M Ozbudak, Short-lived her proteins drive robust synchronized oscillations in the zebrafish segmentation clock, Development 140, 3244 (2013).
http://dx.doi.org/10.1242/dev.093278

[52] L F Shampine, S Thompson, Solving ddes in Matlab, Appl. Numer. Math. 37, 441 (2001).
http://dx.doi.org/10.1016/S0168-9274(00)00055-6

[53] L Wang, Q Nie, G Enciso, Nonessential sites improve phosphorylation switch, Biophys. J. 99, L41 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.07.030

[54] S Ryerson, G Enciso, Ultrasensitivity in independent multisite systems, J. Math. Biol. 69, 977 (2014).
http://dx.doi.org/10.1007/s00285-013-0727-x

[55] G Enciso, Nonautonomous and random dynamical systems in life sciences Lecture Notes in Mathematics (Mathematical Biosciences Subseries) No 2102, Springer Verlag, Berlin (2013).

[56] S Zeiser, J Muller, V Liebscher, Modeling the hes1 oscillator, J. Comput. Biol. 14, 984 (2007).
http://dx.doi.org/10.1089/cmb.2007.0029

[57] M Campanelli, T Gedeon, Somitogenesis clock-wave initiation requires differential decay and multiple binding sites for clock protein, PLoS Comp. Biol. 6, e1000728 (2010).
http://dx.doi.org/10.1371/journal.pcbi.1000728

[58] V M Bedell, Y Wang, J M Campbell, T L Poshusta, C G Starker, R G K II, W Tan, S G Penheiter, A C Ma, A Y H Leung, S C Fahrenkrug, D F Carlson, D F Voytas, K J Clark, J J Essner, S C Ekker, In vivo genome editing using a high-efficiency talen system, Nature 491, 114 (2012).
http://dx.doi.org/10.1038/nature11537

[59] E Pennisi, The crispr craze, Science 341, 833 (2013).
http://dx.doi.org/10.1126/science.341.6148.833

[60] N Barkai, S Leibler, Biological rhythms: Circadian clocks limited by noise, Nature 403, 267 (2000).

[61] M B Elowitz, A J Levine, E D Siggia, P S Swain, Stochastic gene expression in a single cell, Science 297, 1183 (2002).
http://dx.doi.org/10.1126/science.1070919

[62] J Raser, E O'Shea, Noise in gene expression: Origins, consequences, and control, Science 309, 2010 (2005).
http://dx.doi.org/10.1126/science.1105891

[63] B Munsky, G Neuert, A V Oudenaarden, Using gene expression noise to understand gene regulation, Science 336, 183 (2012).
http://dx.doi.org/10.1126/science.1216379

[64] L S Tsimring, Noise in biology, Rep. Prog. Phys. 77, 026601 (2014).
http://dx.doi.org/10.1088/0034-4885/77/2/026601