[1] D K Bradley, D G Barun, S G Glendinning, M J Edwards, J L Milovich, C M Sorce, G W Collins, S W Hann, R H Page, R J Wallace, Very-high-growth-factor planar ablative Rayleigh--Taylor experiments, Phys. Plasmas 14, 056313 (2007).
http://dx.doi.org/10.1063/1.2721971
[2] K S Budil, B A Remington, T A Peyser, K O Mikaelian, P L Miller, N C Woolsey, W M Wood-Vasey, A M Rubenchik, Experimental comparison of classical versus ablative Rayleigh--Taylor instability, Phys. Rev.Lett. 76, 4536 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4536
[3] H Hasegawa, M Fujimoto, T-D Phan, H Reme, A Balogh, M W Dunlop, C Hashimoto, R TanDokoro, Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin--Helmholtz vortices, Nature 430, 755 (2004).
http://dx.doi.org/10.1038/nature02799
[4] R P Drake, Hydrodynamic instabilities in astrophysics and in laboratory high-energy–density systems, Plasma Phys. Control. Fusion 47, B419 (2005).
http://dx.doi.org/10.1088/0741-3335/47/12B/S30
[5] J O Kane, H F Robey, B A Remington, R P Drake, J Knauer, D D Ryutov, H Louis, R Teyssier, O Hurricane, D Arnett, R Rosner, A Calder, Interface imprinting by a rippled shock using an intense laser, Phys. Rev. E 63, 055401R (2001).
http://dx.doi.org/10.1103/PhysRevE.63.055401
[6] D D Ryutov, B A Remington, Scaling astrophysical phenomena to high-energy-density laboratory experiments, Plasma Phys. Control. Fusion 44, B407 (2002).
http://dx.doi.org/10.1088/0741-3335/44/12B/328
[7] L Spitzer, Behavior of matter in space, Astrophys. J. 120, 1 (1954).
http://dx.doi.org/10.1086/145876
[8] B A Remington, R P Drake, H Takabe, D Arnett, A review of astrophysics experiments on intense lasers, Phys. Plasma 7, 1641 (2000).
http://dx.doi.org/10.1063/1.874046
[9] E C Harding, J F Hansen, O A Hurricane, R P Drake, H F Robey, C C Kuranz, B A Remington, M J Bono, M J Grosskopf, R S Gillespie, Observation of a Kelvin--Helmholtz instability in a high-energy-density plasma on the omega laser, Phys. Rev.Lett. 103, 045005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.045005
[10] D Layzer, On the Instability of Superposed Fluids in a Gravitational Field, Astrophys. J. 122, 1 (1955).
http://dx.doi.org/10.1086/146048
[11] V N Goncharov, Analytical model of nonlinear, single-mode, classical Rayleigh--Taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett. 88, 134502 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.134502
[12] Sung-Ik Sohn, Simple potential-flow model of Rayleigh--Taylor and Richtmyer--Meshkov instabilities for all density ratios, Phys. Rev. E 67, 026301 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.026301
[13] Q Zhang, Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing, Phys. Rev. Lett. 81, 3391 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3391
[14] R Banerjee, L Mandal, M Khan, M R Gupta, Effect of viscosity and shear flow on the nonlinear two fluid interfacial structures, Phys. Plasmas 19, 122105 (2012).
http://dx.doi.org/10.1063/1.4769728
[15] S Chandrasekhar, Hydrodynamic and hydromagnetic stability, Dover, New York (1961).
[16] K O Mikaelian, Rayleigh--Taylor instability in finite-thickness fluids with viscosity and surface tension, Phys. Rev. E 54, 3676 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.3676
[17] Sung-Ik Sohn, Effects of surface tension and viscosity on the growth rates of Rayleigh--Taylor and Richtmyer--Meshkov instabilities, Phys. Rev. E 80, 055302(R) (2009).
[18] D I Pullin, Numerical studies of surface tension effects in nonlinear Kelvin–Helmholtz and Rayleigh–Taylor instability, J. Fluid Mech. 119, 507 (1982).
http://dx.doi.org/10.1017/S0022112082001463
[19] J Garnier, C Cherfils-Clerouin, A P Holstein, Statistical analysis of multimode weakly nonlinear Rayleigh--Taylor instability in the presence of surface tension, Phys. Rev. E 68, 036401 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.036401
[20] R Banerjee, L Mandal, S Roy, M Khan, M R Gupta, Combined effect of viscosity and vorticity on single mode Rayleigh–Taylor instability bubble growth, Phys. Plasmas 18, 022109 (2011).
http://dx.doi.org/10.1063/1.3555523
[21] M R Gupta, R Banerjee, L K Mandal, R Bhar, H C Pant, M Khan, M K Srivastava, Effect of viscosity and surface tension on the growth of Rayleigh–Taylor instability and Richtmyer–Meshkov instability induced two fluid interfacial nonlinear structure, Indian J. Phys. 86, 471 (2012).
http://dx.doi.org/10.1007/s12648-012-0077-3
[22] R Banerjee, L Mandal, M Khan, M R Gupta, Bubble and spike growth rate of Rayleigh Taylor and Richtmeyer Meshkov instability in finite layers, Indian J. Phys. 87, 929 (2013).
http://dx.doi.org/10.1007/s12648-013-0300-x
[23] R Banerjee, L Mandal, M Khan, M R Gupta, Spiky Development at the Interface in Rayleigh--Taylor Instability: Layzer Approximation with Second Harmonic, J. Morden Phys. 4, 174 (2013).
http://dx.doi.org/10.4236/jmp.2013.42024