[1] Y Kopelevich, P Esquinazi, J Torres, S Moehlecke, Ferromagnetic- and superconducting-like behavior of graphite, J. Low Temp. Phys. 119, 691 (2000).
http://dx.doi.org/10.1023/A:1004637814008

[2] M Inagaki, New Carbons: Control of Structure and Functions, Elsevier (2000).

[3] J Barzola-Quiquia, J L Yao, P Rodiger, K Schindler, P Esquinazi, Sample size effects on the transport properties of mesoscopic graphite samples, Phys. Status Solidi A 205, 2924 (2008).
http://dx.doi.org/10.1002/pssa.200824288

[4] N Garcia, P Esquinazi, J Barzola-Quiquia, S Dusari, Evidence for semiconducting behavior with a narrow band gap of Bernal graphite, New J. Phys. 14, 053015 (2012).
http://dx.doi.org/10.1088/1367-2630/14/5/053015

[5] Y Ohashi, K Yamamoto, T Kubo, Shubnikov - de Haas effect of very thin graphite crystals, In: Carbon'01, An International Conference on Carbon, Pag. 568, The American Carbon Society, Lexington, KY, United States, (2001).

[6] A Arndt, D Spoddig, P Esquinazi, J Barzola-Quiquia, S Dusari, T Butz, Electric carrier concentration in graphite: Dependence of electrical resistivity and magnetoresistance on defect concentration, Phys. Rev. B 80, 195402 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195402

[7] A Ballestar, J Barzola-Quiquia, S Dusari, P Esquinazi, R R da Silva, Y Kopelevich, Electric field induced superconductivity in multigraphene, arXiv:1202.3327 (2012).

[8] X Du, S W Tsai, D L Maslov, A F Hebard, Metal-insulator-like behavior in semimetallic bismuth and graphite, Phys. Rev. Lett. 94, 166601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.166601

[9] B C Camargo, Y Kopelevich, S B Hubbard, A Usher, W Bohlmann, P Esquinazi, Effect of structural disorder on the quantum oscillations in graphite, (unpublished). In this work the authors show that in certain HOPG samples (SPI) of high grade, the density of interfaces is much lower than in, for example, Advanced Ceramics HOPG ZYA samples. In this new HOPG samples basically no SdH oscillations are found and the temperature dependence of the resistance shows a semiconducting behavior with saturation a low temperatures. (2013).

[10] D V Gitsu, A F Grozav, V G Kistol, L I Leporda, F M Muntyanu, Experimental observation of a superconducting phase with T_c = 8.5 K in large-angle bismuth bicrystals, JETP Lett. 55, 403 (1992).

[11] F M Muntyanu, L I Leporda, Restructuring of the energy spectrum in large angle bismuth bicrystals, Phys. Solid State 37, 298 (1995).

[12] F Muntyanua, A Gilewski, K Nenkov, J Warchulska, A Zaleski, Experimental magnetization evidence for two superconducting phases in Bi bicrystals with large crystallite disorientation angle, Phys. Rev. B 73, 132507 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.132507

[13] F M Muntyanu, A Gilewski, K Nenkov, A J Zaleski, V Chistol, Fermi-surface rearrangement in Bi bicrystals with twisting superconducting crystallite interfaces, Phys. Rev. B 76, 014532 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.014532

[14] F Muntyanua, A Gilewski, K Nenkov, A Zaleski, V Chistol, Superconducting crystallite interfaces with $T_c$ up to 21 K in Bi and Bi-Sb bicrystals of inclination type, Solid State Commun. 147, 183 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.05.024

[15] J Barzola-Quiquia, P Esquinazi, Ferromagnetic- and superconducting-like behavior of the electrical resistance of an inhomogeneous graphite flake, J. Supercond. Nov. Magn. 23, 451 (2010).
http://dx.doi.org/10.1007/s10948-009-0596-0

[16] P Esquinazi, J Barzola-Quiquia, D Spemann, M Rothermel, H Ohldag, N Garcia, A Setzer, T Butz, Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties, J. Magn. Magn. Mat. 322, 1156 (2010).
http://dx.doi.org/10.1016/j.jmmm.2009.06.038

[17] P Esquinazi, N Garcia, J Barzola-Quiquia, P Rodiger, K Schindler, J L Yao, M Ziese, Indications for intrinsic superconductivity in highly oriented pyrolytic graphite, Phys. Rev. B 78, 134516 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134516

[18] S Dusari, J Barzola-Quiquia, P Esquinazi, Superconducting behavior of interfaces in graphite: Transport measurements of micro-constrictions, J. Supercond. Nov. Magn. 24, 401 (2011).
http://dx.doi.org/10.1007/s10948-010-0947-x

[19] L Ji, M S Rzchowski, N Anand, M Thinkam, Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors, Phys. Rev. B 47, 470 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.470 [20] Y Kopelevich, C dos Santos, S Moehlecke, A Machado, Current-induced superconductor-insulator transition in granular High-T_c Superconductors, arXiv:0108311 (2001).

[21] I Felner, E Galstyan, B Lorenz, D Cao, Y S Wang, Y Y Xue, C W Chu, Magnetoresistance hysteresis and critical current density in granular RuSr_2Gd_(2-x)Ce_xCu_2O_(10-delta), Phys. Rev. B 67, 134506 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.134506

[22] A Ballestar, J Barzola-Quiquia, T Scheike, P Esquinazi, Evidence of Josephson-coupled superconducting regions at the interfaces of highly oriented pyrolytic graphite, New J. Phys. 15, 023024 (2013).
http://dx.doi.org/10.1088/1367-2630/15/2/023024

[23] Y Kawashima, Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface, AIP Advances 3, 052132 (2013).
http://dx.doi.org/10.1063/1.4808207

[24] Y Kopelevich, J H S Torres, R R da Silva, F Mrowka, H Kempa, P Esquinazi, Reentrant metallic behavior of graphite in the quantum limit, Phys. Rev. Lett. 90, 156402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.156402

[25] T Scheike, W Bohlmann, P Esquinazi, J Barzola-Quiquia, A Ballestar, A Setzer, Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder, Adv. Mater. 24, 5826 (2012).
http://dx.doi.org/10.1002/adma.201202219

[26] T Scheike, P Esquinazi, A Setzer, W Bohlmann, Granular superconductivity at room temperature in bulk highly oriented pyrolytic graphite samples, Carbon 59, 140 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.03.002

[27] S Kobayashi, S Takahashi, T Shishido, Y Kamada, H Kikuchi, Low-field magnetic characterization of ferromagnets using a minor-loop scaling law, J. Appl. Phys. 107, 023908 (2010).
http://dx.doi.org/10.1063/1.3289317

[28] H Ohldag, P Esquinazi, E Arenholz, D Spemann, M Rothermel, A Setzer, T Butz, The role of hydrogen in room-temperature ferromagnetism at graphite surfaces, New J. Phys. 12, 123012 (2010).
http://dx.doi.org/10.1088/1367-2630/12/12/123012

[29] J Barzola-Quiquia, W Bohlmann, P Esquinazi, A Schadewitz, A Ballestar, S Dusari, L Schultze-Nobre, B Kersting, Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment, Appl. Phys. Lett. 98, 192511 (2011).
http://dx.doi.org/10.1063/1.3590924

[30] P Esquinazi, W Hergert, D Spemann, A Setzer, A Ernst, Defect-induced magnetism in solids, IEEE Transactions on Magnetics 49, 4668 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2255867

[31] N B Kopnin, M Ijas, A Harju, T T Heikkila, High-temperature surface superconductivity in rhombohedral graphite, Phys. Rev. B 87, 140503 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.140503 [32] A Ballestar, Superconductivity at graphite interfaces, Ph.D. Thesis, University of Leipzig, (unpublished).

[33] W A Mu-oz, L Covaci, F Peeters, Tight-binding description of intrinsic superconducting correlations in multilayer graphene, Phys. Rev. B 87, 134509 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.134509