[1] M Platt, P Glimcher, Neural correlates of decision variables in parietal cortex, Nature 400, 233 (1999).
http://dx.doi.org/10.1038/22268

[2] J D Schall, Neural basis of deciding, choosing and acting, Nat. Rev. Neurosci. 2, 33 (2001).
http://dx.doi.org/10.1038/35049054

[3] J I Gold, M N Shadlen, The neural basis of decision making, Annu. Rev. Neurosci. 30, 535 (2007).
http://dx.doi.org/10.1146/annurev.neuro.29.051605.113038

[4] P R Roelfsema, P S Khayat, H Spekreijse, Subtask sequencing in the primary visual cortex, P. Natl. Acad. Sci. USA 100, 5467 (2003).
http://dx.doi.org/10.1073/pnas.0431051100

[5] R Romo, E Salinas, Flutter discrimination: Neural codes, perception, memory and decision making, Nat. Rev. Neurosci. 4, 203 (2003).
http://dx.doi.org/10.1038/nrn1058

[6] S I Moro, M Tolboom, P S Khayat, P R Roelfsema, Neuronal activity in the visual cortex reveals the temporal order of cognitive operations, J. Neurosci. 30, 16293 (2010).
http://dx.doi.org/10.1523/JNEUROSCI.1256-10.2010

[7] A Newell, Unified theories of cognition, Harvard University Press, Cambridge, Massachusetts (1990).

[8] J R Anderson, C J Lebiere, The atomic components of thought, Lawrence Erlbaum, Mahwah, New Jersey (1998).

[9] S Ullman, Visual routines, Cognition 18, 97 (1984).
http://dx.doi.org/10.1016/0010-0277(84)90023-4

[10] A Newell, Productions systems: Models of control structures, In: Visual Information Processing, Ed. W G Chase, Pag. 463, Academic Press, New York (1973).

[11] S Dehaene, M Sigman, From a single decision to a multi-step algorithm, Curr. Opin. Neurobio. 22, 937 (2012).
http://dx.doi.org/10.1016/j.conb.2012.05.006

[12] J Gottlieb, P Balan, Attention as a decision in information space, Trends Cogn. Sci. 14, 240 (2010).
http://dx.doi.org/10.1016/j.tics.2010.03.001

[13] J D Roitman, M N Shadlen, Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task, J. Neurosci. 22, 9475 (2002).

[14] M N Shadlen, W T Newsome, Motion perception: Seeing and deciding, P. Natl. Acad. Sci. USA 93, 628 (1996).
http://dx.doi.org/10.1073/pnas.93.2.628

[15] Y Huang, A Friesen, T Hanks, M Shadlen, R Rao, How prior probability influences decision making: A unifying probabilistic model, In: Advances in Neural Information Processing Systems 25, Eds. P Bartlett, F C N Pereira, C J Ca L Burges, L Bottou, K Q Weinberger, Pag. 1277, Lake Tahoe, Nevada (2012).

[16] L P Sugrue, G S Corrado, W T Newsome, Matching behavior and the representation of value in the parietal cortex, Science 304, 1782 (2004).
http://dx.doi.org/10.1126/science.1094765

[17] J D Wallis, K C Anderson, E K Miller, Single neurons in prefrontal cortex encode abstract rules, Nature 411, 953 (2001).
http://dx.doi.org/10.1038/35082081

[18] J Von Neumann, The computer and the brain, Yale University Press, New Haven, Connecticut (1958).

[19] A Zylberberg, S Dehaene, P R Roelfsema, M Sigman, The human Turing machine: A neural framework for mental programs, Trends Cogn. Sci. 15, 293 (2011).
http://dx.doi.org/10.1016/j.tics.2011.05.007

[20] G Maimon, J A Assad, A cognitive signal for the proactive timing of action in macaque lip, Nat. Neurosci. 9, 948 (2006).
http://dx.doi.org/10.1038/nn1716

[21] M N Shadlen, R Kiani, T D Hanks, A K Churchland, Neurobiology of decision making an intentional framework, In: Better Than Conscious?, Eds. C Engel, W Singer, Pag. 71, MIT Press, Massachusetts (2008).

[22] A Zylberberg, S Dehaene, G B Mindlin, M Sigman, Neurophysiological bases of exponential sensory decay and top-down memory retrieval: A model, Front. Comput. Neurosci. 3, 4 (2009).
http://dx.doi.org/10.3389/neuro.10.004.2009

[23] G Mongillo, O Barak, M Tsodyks, Synaptic theory of working memory, Science 319, 1543 (2008).
http://dx.doi.org/10.1126/science.1150769

[24] R C O'Reilly, Biologically based computational models of high-level cognition, Science 314, 91 (2006).
http://dx.doi.org/10.1126/science.1127242

[25] L Shastri, V Ajjanagadde, et al., From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony, Behav. Brain Sci. 16, 417 (1993).
http://dx.doi.org/10.1017/S0140525X00030910

[26] R Hahnloser, R J Douglas, M Mahowald, K Hepp, Feedback interactions between neuronal pointers and maps for attentional processing, Nat. Neurosci. 2, 746 (1999).
http://dx.doi.org/10.1038/11219

[27] X j Wang, Introduction to computational neuroscience, Technical report Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts (2006).

[28] C Carr, M Konishi, A circuit for detection of interaural time differences in the brain stem of the barn owl, J. Neurosci. 10, 3227 (1990).

[29] J Slaney, S Thiébaux, Blocks world revisited, Artif. Intell. 125, 119 (2001).
http://dx.doi.org/10.1016/S0004-3702(00)00079-5

[30] P R Roelfsema, V A Lamme, H Spekreijse, The implementation of visual routines, Vision Res. 40, 1385 (2000).
http://dx.doi.org/10.1016/S0042-6989(00)00004-3

[31] P R Roelfsema, Elemental operations in vision, Trends Cogn. Sci. 9, 226 (2005).
http://dx.doi.org/10.1016/j.tics.2005.03.012

[32] S Dehaene, J P Changeux, Development of elementary numerical abilities: A neuronal model, J. Cognitive Neurosci. 5, 390 (1993).
http://dx.doi.org/10.1162/jocn.1993.5.4.390

[33] M Piazza, V Izard, P Pinel, D Le Bihan, S Dehaene, Tuning curves for approximate numerosity in the human intraparietal sulcus, Neuron 44, 547 (2004).
http://dx.doi.org/10.1016/j.neuron.2004.10.014

[34] A Nieder, S Dehaene, Representation of number in the brain, Annu. Rev. Neurosci. 32, 185 (2009).
http://dx.doi.org/10.1146/annurev.neuro.051508.135550

[35] C Lebiere, The dynamics of cognition: An ACT-R model of cognitive arithmetic, Doctoral dissertation. Carnegie Mellon University, Pittsburgh, Pennsylvania (1998).

[36] D Y Ts'o, C D Gilbert, T N Wiesel, Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J. Neurosci. 6, 1160 (1986).

[37] B A McGuire, C D Gilbert, P K Rivlin, T N Wiesel, Targets of horizontal connections in macaque primary visual cortex, J. Comp. Neurol. 305, 370 (1991).
http://dx.doi.org/10.1002/cne.903050303

[38] C D Gilbert, Y Daniel, T N Wiesel, Lateral interactions in visual cortex, In: From pigments to perception, Eds. A Valberg, B B Lee, Pag. 239, Plenun Press, New York (1991).

[39] M Sigman, G A Cecchi, C D Gilbert, M O Magnasco, On a common circle: Natural scenes and gestalt rules, P. Natl. Acad. Sci. USA 98, 1935 (2001).
http://dx.doi.org/10.1073/pnas.98.4.1935

[40] C D Gilbert, M Sigman, R E Crist, The neural basis of perceptual learning, Neuron 31, 681 (2001).
http://dx.doi.org/10.1016/S0896-6273(01)00424-X

[41] C D Gilbert, M Sigman, Brain states: Top-down influences in sensory processing, Neuron 54, 677 (2007).
http://dx.doi.org/10.1016/j.neuron.2007.05.019

[42] M K Kapadia, M Ito, C D Gilbert, G Westheimer, Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in v1 of alert monkeys, Neuron 15, 843 (1995).
http://dx.doi.org/10.1016/0896-6273(95)90175-2

[43] V A Lamme, P R Roelfsema, The distinct modes of vision offered by feedforward and recurrent processing., Trends Neurosci. 23, 571 (2000).
http://dx.doi.org/10.1016/S0166-2236(00)01657-X

[44] S Thorpe, D Fize, C Marlot, Speed of processing in the human visual system, Nature 381, 520 (1996).
http://dx.doi.org/10.1038/381520a0

[45] D J Felleman, D C Van Essen, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1, 1 (1991).
http://dx.doi.org/10.1093/cercor/1.1.1

[46] G Sperling, The information available in brief visual presentations, Psychol. Monogr. Gen. A. 74, 1 (1960).

[47] M Graziano, M Sigman, The dynamics of sensory buffers: Geometric spatial and experience-dependent shaping of iconic memory, J. Vision 8, 1 (2008).
http://dx.doi.org/10.1167/8.5.9

[48] F Hamker, The role of feedback connections in task-driven visual search, In: Connectionist models in cognitive neuroscience, Eds. D Heinke et al., Pag. 252, Springer-Verlag, London (1999).

[49] F H Hamker, A dynamic model of how feature cues guide spatial attention, Vision Res. 44, 501 (2004).
http://dx.doi.org/10.1016/j.visres.2003.09.033

[50] D Heinke, G W Humphreys, Attention, spatial representation, and visual neglect: Simulating emergent attention and spatial memory in the selective attention for identification model (saim)., Psychol. Rev. 110, 29 (2003).
http://dx.doi.org/10.1037/0033-295X.110.1.29

[51] T Shallice, Specific impairments of planning, Phil. Trans. R. Soc. Lond. B 298, 199 (1982).
http://dx.doi.org/10.1098/rstb.1982.0082

[52] D H Ballard, M M Hayhoe, P K Pook, R P N Rao, Deictic codes for the embodiment of cognition, Behav. Brain Sci. 20, 723 (1997).
http://dx.doi.org/10.1017/S0140525X97001611

[53] A Zylberberg, L Paz, P R Roelfsema, S Dehaene, M Sigman, Supplementary Material to this paper, available at www.papersinphysics.org (2013).

[54] R S Sutton, A G Barto, Reinforcement learning: An introduction, MIT Press, Massachusetts (1998).

[55] P R Roelfsema, A van Ooyen, T Watanabe, Perceptual learning rules based on reinforcers and attention., Trends Cogn. Sci. 14, 64 (2010).
http://dx.doi.org/10.1016/j.tics.2009.11.005

[56] J O Rombouts, S M Bohte, P R Roelfsema, Neurally plausible reinforcement learning of working memory tasks, In: Advances in Neural Information Processing Systems 25, Eds. P Bartlett, F C N Pereira, C J Ca L Burges, L Bottou, K Q Weinberger, Pag. 1880, Lake Tahoe, Nevada (2012).

[57] S Dehaene, J P Changeux, A hierarchical neuronal network for planning behavior, P. Natl. Acad. Sci. USA 94, 13293 (1997).
http://dx.doi.org/10.1073/pnas.94.24.13293