[1] R H Britten, The incidence of epidemic influenza, 1918-1919. A further analysis according to age, sex, and color of records of morbidity and mortality obtained in surveys of 12 localities, Pub. Health. Rep. 47, 303 (1932).
http://dx.doi.org/10.2307/4580340

[2] R Ross, Some a priori pathometric equations, Br. Med. J. 1, 546 (1915).
http://dx.doi.org/10.1136/bmj.1.2830.546

[3] R Ross, An application of the theory of probabilities to the study of a priori pathometry - I, Proc. R. Soc. A 92, 204 (1916).

[4] R Ross, An application of the theory of probabilities to the study of a priori pathometry - II, Proc. R. Soc. A 93, 212 (1916).

[5] R M Anderson, R M May, Infectious diseases of humans: dynamics and control, Oxford University Press, London (1991).

[6] G Macdonald, The epidemiology and control of malaria, Oxford University Press, London (1957).

[7] J L Aron, R M May, The population dynamics of malaria, In: Population dynamics of infectious disease, Eds. R M Anderson, Chapman and Hall, London, Pag. 139 (1982).

[8] K Dietz, Mathematical models for transmission and control of malaria, In: Principles and Practice of Malariology, Eds. W Wernsdorfer, Y McGregor, Churchill Livingston, Edinburgh, Pag. 1091 (1988).

[9] J L Aron, Mathematical modeling of immunity to malaria, Math. Biosci. 90, 385 (1988).
http://dx.doi.org/10.1016/0025-5564(88)90076-4

[10] J A N Filipe, E M Riley, C J Darkeley, C J Sutherland, A C Ghani, Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model, PLoS Comp. Biol. 3, 2569 (2007).
http://dx.doi.org/10.1371/journal.pcbi.0030255

[11] D J Rodriguez, L Torres-Sorando, Models of infectious diseases in spatially heterogeneous environments, Bull. Math. Biol. 63, 547 (2001).
http://dx.doi.org/10.1006/bulm.2001.0231

[12] W O Kermack, A G McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A 115, 700 (1927).

[13] H Abbey, An examination of the Reed Frost theory of epidemics, Human Biology 24, 201 (1952).

[14] N T J Bailey, The mathematical theory of infectious diseases and its applications, Griffin, London (1975).

[15] F G Ball, P Donnelly, Strong approximations for epidemic models, Stoch. Proc. Appl. 55, 1 (1995).
http://dx.doi.org/10.1016/0304-4149(94)00034-Q

[16] H Andersson, T Britton, Stochastic epidemic models and their statistical analysis, Springer Verlag, New York (2000).
http://dx.doi.org/10.1007/978-1-4612-1158-7

[17] O Diekmann, J A P Heesterbeek, Mathematical epidemiology of infectious diseases, Wiley, Chichester (2000).

[18] V Isham, Stochastic models for epidemics: Current issues and developments, In: Celebrating Statistics: Papers in honor of Sir David Cox on his 80th birthday, Oxford University Press, Oxford (2005).

[19] H C Tuckwell, R J Williams, Some properties of a simple stochastic epidemic model of SIR type, Math. Biosc. 208, 76 (2007).
http://dx.doi.org/10.1016/j.mbs.2006.09.018

[20] D Mollison, Dependence of epidemic and population velocities on basic parameters, Math. Biosc. 107, 255 (1991).
http://dx.doi.org/10.1016/0025-5564(91)90009-8

[21] J D Murray, E A Stanley, D L Brown, On the spatial spread of rabies among foxes, Proc. Royal Soc. London B 229, 111 (1986).
http://dx.doi.org/10.1098/rspb.1986.0078

[22] H W Hethcote, Three basic epidemiological models, In: Applied mathematical ecology, Eds. S A Levin, T G Hallam, L Gross, Pag. 119, Springer, Berlin (1989).

[23] M N Kuperman, H S Wio, Front propagation in epidemiological models with spatial dependence, Physica A 272, 206 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00284-8

[24] E Beretta, Y Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol. 33, 250 (1995).
http://dx.doi.org/10.1007/BF00169563

[25] A Franceschetti, A Pugliese, Threshold behaviour of a SIR epidemic model with age structure and immigration, J Math Biol. 57, 1 (2008).
http://dx.doi.org/10.1007/s00285-007-0143-1

[26] J Yang J, S Liang, Y Zhang, Travelling waves of a delayed SIR epidemic model with nonlinear incidence rate and spatial diffusion, PLoS One 6, e21128 (2011).
http://dx.doi.org/10.1371/journal.pone.0021128

[27] H W Hethcote, A thousand and one epidemic models, In: Frontiers in Mathematical Biology, Eds. S Levin, Pag. 504, Springer, Berlin (1994).

[28] P Erdos, A Rényi, On random graphs, Publ. Math-Debrecen 6, 290, (1959).

[29] S Milgram, The small world problem, Psychol. Today 2, 60 (1967).

[30] D J Watts, S H Strogatz Collective dynamics of 'small-world' networks, Nature 393, 409 (1998).
http://dx.doi.org/10.1038/30918

[31] E J Newman, D J Watts, Renormalization group analysis of the small-world network model, Physics Letters A 263, 341 (1999).
http://dx.doi.org/10.1016/S0375-9601(99)00757-4

[32] M E J Newman, Networks: An introduction, Oxford University Press, New York (2010).

[33] E J Newman, S H Strogatz, D J Watts. Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E 64, 026118 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.026118

[34] A L Barabási, R Albert, Emergence of scaling in random networks, Science 286, 509 (1999).
http://dx.doi.org/10.1126/science.286.5439.509

[35] P L Krapivsky, G J Rodgers, S Redner, Degree distributions of growing networks, Phys. Rev. Lett. 86, 5401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5401

[36] K Klemm, V M Eguíluz, Highly clustered scale-free networks, Phys. Rev. E 65, 036123 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.036123

[37] P Holme, B J Kim, Growing scale-free networks with tunable clustering, Phys. Rev. E 65, 026107 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.026107

[38] R Xulvi-Brunet, I M Sokolov, Changing correlations in networks: Assortativity and dissortativity, Acta Phys. Pol. B 36, 1431 (2005).

[39] T E Harris, Contact interactions on a lattice, Ann. Probab. 2, 969 (1974).
http://dx.doi.org/10.1214/aop/1176996493

[40] S Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55, 601 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.601

[41] P Grassberger, On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci. 63, 157 (1983).
http://dx.doi.org/10.1016/0025-5564(82)90036-0

[42] M A Fuentes, M N Kuperman, Cellular automata and epidemiological models with spatial dependence, Physica A 267, 471 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00027-8

[43] P Bak, K Chen, C Tang, A forest-fire model and some thoughts on turbulence, Phys. Lett. A 147, 297 (1990).
http://dx.doi.org/10.1016/0375-9601(90)90451-S

[44] C J Rhodes, R M Anderson, Epidemic thresholds and vaccination in a lattice model of disease spread, Theor. Popul. Biol. 52, 101 (1997).
http://dx.doi.org/10.1006/tpbi.1997.1323

[45] C J Rhodes, H J Jensen, R M Anderson, On the critical behaviour of simple epidemics, Proc. R. Soc. B 264, 1639 (1997).
http://dx.doi.org/10.1098/rspb.1997.0228

[46] O Diekmann, J A P Heesterbeek, J A J Metz, A deterministic epidemic model taking account of repeated contacts between the same individuals, J. Appl. Prob. 35, 462 (1998).

[47] A Barbour, D Mollison, Epidemics and random graphs In: Stochastic processes in epidemic theory, Eds. J P Gabriel, C Lefèvre, P Picard, Pag. 86, Springer, New York (1990).

[48] E J Newman, Spread of epidemic disease on networks, Phys Rev. E 66, 016128 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.016128

[49] D Mollison, Spatial contact models for ecological and epidemic spread, J. Roy. Stat. Soc. 39, 283 (1977).

[50] T Grenfell, O N Bjornstad, J Kappey, Travelling waves and spatial hierarchies in measles epidemics, Nature 414, 716 (2001).
http://dx.doi.org/10.1038/414716a

[51] C Moore, M E J Newman, Epidemics and percolation in small-world networks, Phys. Rev. E 61, 5678 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.5678

[52] M N Kuperman, G Abramson, Small world effect in an epidemiological model, Phys. Rev. Lett. 86, 2909 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2909

[53] H W Hethcote, J A Yorke, Gonorrhea transmission dynamics and control, Springer Lecture Notes in Biomathematics, Springer, Berlin (1984).

[54] R Pastor-Satorras, A Vespignani Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86, 3200 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3200

[55] A L Lloyd, R M May, How viruses spread among computers and people, Science 292, 1316 (2001).
http://dx.doi.org/10.1126/science.1061076

[56] F Liljeros, C R Edling, L A N Amaral, H E Stanley, Y Aberg, The web of human sexual contacts, Nature 411, 907 (2001).
http://dx.doi.org/10.1038/35082140

[57] F Liljeros, C R Edling, L A N Amaral, Sexual networks: implications for the transmission of sexually transmitted infections, Microbes Infect. 5, 189 (2003).
http://dx.doi.org/10.1016/S1286-4579(02)00058-8

[58] T Gross, C J D D'Lima, B Blasius, Epidemic dynamics on an adaptive network, Phys. Rev. Lett. 96, 208701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.208701

[59] L B Shaw, I B Schwartz, Fluctuating epidemics on adaptive networks, Phys. Rev. E 77, 066101 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.066101

[60] D H Zanette, S Risau-Gusmán, Infection spreading in a population with evolving contacts, J. Biol. Phys. 34, 135 (2008)
http://dx.doi.org/10.1007/s10867-008-9060-9

[61] S Risau-Gusmán, D H Zanette, Contact switching as a control strategy for epidemic outbreaks, J. Theor. Biol. 257, 52 (2009).
http://dx.doi.org/10.1016/j.jtbi.2008.10.027

[62] M C Bonnet, A Dutta, World wide experience with inactivated poliovirus vaccine, Vaccine 26, 4978 (2008).
http://dx.doi.org/10.1016/j.vaccine.2008.07.026

[63] D H Zanette, M Kuperman, Effects of immunization in small-world epidemics, Physica A 309, 445 (2002).
http://dx.doi.org/10.1016/S0378-4371(02)00618-0

[64] R Albert, H Jeong, A L Barabási, Error and attack tolerance of complex networks, Nature 406, 378 (2000).
http://dx.doi.org/10.1038/35019019

[65] D S Callaway, M E J Newman, S H Strogatz, D J Watts, Network robustness and fragility: Percolation on random graphs, Phys. Rev. Lett. 85, 5468 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5468

[66] R M May, A L Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E 64, 066112 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.066112

[67] R Pastor-Satorras, A Vespignani, Immunization of complex networks, Phys. Rev. E 65, 036104 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.036104

[68] N Madar, T Kalisky, R Cohen, D ben-Avraham, S Havlin, Immunization and epidemic dynamics in complex networks, Eur. Phys. J. B 38, 269 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00119-8