[1] J W McClure, Energy band structure of graphite, IBM J. Res. Dev. 8, 255 (1964).
http://dx.doi.org/10.1147/rd.83.0255
[2] B T Kelly, Physics of graphite, London: Applied Science Publishers (1981).
[3] A Gruneis, C Attaccalite, T Pichler, V Zabolotnyy, H Shiozawa, S L Molodtsov, D Inosov, A Koitzsch, M Knupfer, J Schiessling, R Follath, R Weber, P Rudolf, R Wirtz, A Rubio, Electron-electron correlation in graphite: A combined angle-resolved photoemission and first-principles study, Phys. Rev. Lett. 100, 037601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.037601
[4] I M Tsidilkovski, Electron spectrum of gapless semiconductors. Vol. 116, Springer Verlag (1997).
http://dx.doi.org/10.1007/978-3-642-60403-4
[5] R O Dillon, I L Spain, J W McClure,
Electronic energy band parameters of graphite and their dependence on pressure, temperature and acceptor concentration, J. Phys. Chem. Solids 38, 635 (1977).
http://dx.doi.org/10.1016/0022-3697(77)90231-1
[6] J M Schneider, M Orlita, M Potemski, D K Maude, Consistent interpretation of the low-temperature magnetotransport in graphite using the Slonczewski-Weiss-McClure 3D band-structure calculations, Phys. Rev. Lett. 102, 166403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.166403
[7] J Barzola-Quiquia, J L Yao, P Rodiger, K Schindler, P Esquinazi, Sample size effects on the transport properties of mesoscopic graphite samples, Physica Status Solidi A 205, 2924 (2008).
http://dx.doi.org/10.1002/pssa.200824288
[8] M Inagaki, New carbons: Control of
structure and functions, Elsevier (2000).
[9] A Arndt, D Spoddig, P Esquinazi, J Barzola-Quiquia, S Dusari, T Butz, Electric carrier concentration in graphite: Dependence of electrical resistivity and magnetoresistance on defect concentration, Phys. Rev. B 80, 195402 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195402
[10] N Garcia, P Esquinazi, J Barzola-Quiquia, S Dusari, Evidence for semiconducting behavior with a narrow band gap of Bernal graphite, New J. Phys. 14, 053015 (2012).
http://dx.doi.org/10.1088/1367-2630/14/5/053015
[11] Y Ohashi, K Yamamoto, T Kubo, Shubnikov - de Haas effect of very thin graphite crystals, In: Carbon'01, An International Conference on Carbon, Pag. 568, The American Carbon Society, Lexington, KY, United States (2001).
[12] B C Camargo, Y Kopelevich, S B Hubbard, A Usher, W Bohlmann, P Esquinazi, Effect of structural
disorder on the quantum oscillations in graphite (unpublished). In this work the authors show that in certain HOPG samples (SPI) of high grade, the density of interfaces is much lower than in, for example, Advanced Ceramics HOPG ZYA samples. In this new HOPG samples basically no SdH oscillations are found and the temperature dependence of the resistance shows a semiconducting behavior with saturation a low temperatures (2013).
[13] M Orlita, C Faugeras, G Martinez, D K Maude, M L Sadowski, J M Schneider, M Potemski, Magneto-transmission as a probe of Dirac fermions in bulk graphite, J. Phys: Cond. Mat. 20, 454223 (2008).
http://dx.doi.org/10.1088/0953-8984/20/45/454223
[14] N A Goncharuk, L Nadvornik, C Faugeras, M Orlita, L Smrvcka, Infrared magnetospectroscopy of graphite in tilted fields, Phys. Rev. B 86, 155409 (2012).
http://dx.doi.org/
10.1103/PhysRevB.86.155409
[15] J C Gonzalez, M Mu-oz, N Garcia, J Barzola-Quiquia, D Spoddig, K Schindler, P Esquinazi, Sample-size effects in the magnetoresistance of graphite, Phys. Rev. Lett. 99, 216601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216601
[16] N Garcia, P Esquinazi, J Barzola-Quiquia, B Ming, D Spoddig, Transition from ohmic to ballistic transport in oriented graphite: Measurements and numerical simulations, Phys. Rev. B 78, 035413 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035413
[17] S Dusari, J Barzola-Quiquia, P Esquinazi, N Garcia, Ballistic transport at room temperature in micrometer-size graphite flakes, Phys. Rev. B 83, 125402 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.125402
[18] P Esquinazi, J Barzola-
Quiquia, S Dusari, N Garcia, Length dependence of the resistance in graphite: Influence of ballistic transport, J. Appl. Phys. 111, 033709 (2012).
http://dx.doi.org/10.1063/1.3682094
[19] Q Lin, T Li, Z Liu, Y Song, L He, Z Hu, Q Guo, H Ye, High-resolution TEM observations of isolated rhombohedral crystallites in graphite blocks, Carbon 50, 2369 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.01.054
[20] C H Lui, Z Li, Z Chen, P V Klimov, L E Brus, T F Heinz, Imaging stacking order in few-layer graphene, Nano Lett. 11, 164 (2011).
http://dx.doi.org/10.1021/nl1032827
[21] N B Kopnin, M Ijas, A Harju, T T Heikkila, High-temperature surface superconductivity in rhombohedral graphite, Phys. Rev. B 87, 140503 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.140503
[22] P Esquinazi, J Barzola-Quiquia, D Spemann, M Rothermel, H Ohldag, N Garcia, A Setzer, T Butz, Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties, J. Magn. Magn. Mat. 322, 1156 (2010).
http://dx.doi.org/10.1016/j.jmmm.2009.06.038
[23] H Kempa, Y Kopelevich, F Mrowka, A Setzer, J H S Torres, R Hohne, P Esquinazi, Magnetic field driven superconductor-insulator-type transition in graphite, Solid State Commun. 115, 539 (2000).
http://dx.doi.org/10.1016/S0038-1098(00)00233-7
[24] Y Kopelevich, P Esquinazi, J H S Torres, R R da Silva, H Kempa, Graphite as a highly correlated electron liquid, In: Advances in Solid State Physics, Vol. 43, Ed. B Kramer, Pag. 207, Springer-Verlag, Berlin (2003).
[25] T Tokumoto, E Jobiliong, E
Choi, Y Oshima, J Brooks, Electric and thermoelectric transport probes of metal-insulator and two-band magnetotransport behavior in graphite, Solid State Commun. 129, 599 (2004).
http://dx.doi.org/10.1016/j.ssc.2003.11.037
[26] X Du, S W Tsai, D L Maslov, A F Hebard, Metal-insulator-like behavior in semimetallic bismuth and graphite, Phys. Rev. Lett. 94, 166601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.166601
[27] Y Zhang, J P Small, W V Pontius, P Kim, Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Appl. Phys. Lett. 86, 073104 (2005).
http://dx.doi.org/10.1063/1.1862334
[28] See several reviews in: Graphite and precursors, World of carbon series, Ed. P Delhaes, Gordon and Breach Science Publishers (2001).
[29] T Scheike, P Esquinazi, A Setzer, W Bohlmann, Granular superconductivity at room temperature in bulk highly oriented pyrolytic graphite samples, Carbon 59, 140 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.03.002
[30] Y Kopelevich, V Lemanov, S Moehlecke, J Torres, Landau level quantization and possible superconducting instabilities in highly oriented pyrolitic graphite, Phys. Solid State 41, 1959 (1999).
http://dx.doi.org/10.1134/1.1131135
[31] H Kempa, H C Semmelhack, P Esquinazi, Y Kopelevich, Absence of metal-insulator transition and coherent interlayer transport in oriented graphite in parallel magnetic fields, Solid State Commun. 125, 1 (2003).
http://dx.doi.org/10.1016/S0038-1098(02)00711-1
[32] Y Kopelevich, P Esquinazi, J Torres, R da
Silva, H Kempa, F Mrowka, R Oca-a, Metal-insulator-metal transitions, superconductivity and magnetism in graphite, In: Studies of High Temperature Superconductors, Vol. 45, Chap. 3, Pag. 59, Nova Science Publishers Inc. (2003).
[33] M P A Fisher, Quantum phase transitions in disordered two-dimensional superconductors, Phys. Rev. Lett. 65, 923 (2000).
http://dx.doi.org/10.1103/PhysRevLett.65.923
[34] E Abrahams, S V Kravchenko, M P Sarachik, Metallic behavior and related phenomena in two dimensions, Rev. Mod. Phys. 73, 251 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.251
[35] Y Shapira, G Deutscher, Semiconductor-superconductor transition in granular Al-Ge, Phys. Rev. B 27, 4463 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.4463
[36] J S Langer, V
Ambegaokar, Intrinsic resistive transition in narrow superconducting channels, Phys. Rev. 164, 498 (1967).
http://dx.doi.org/10.1103/PhysRev.164.498
[37] D E McCumber, B I Halperin, Time scale of intrinsic resistive fluctuations in thin superconducting wires, Phys. Rev. B 1, 1054 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.1054
[38] P Esquinazi, N Garcia, J Barzola-Quiquia, P Rodiger, K Schindler, J L Yao, M Ziese, Indications for intrinsic superconductivity in highly oriented pyrolytic graphite, Phys. Rev. B 78, 134516 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134516
[39] L Ji, M S Rzchowski, N Anand, M Thinkam, Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors, Phys. Rev. B 47, 470 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.470
[40] Y Kopelevich, C dos Santos, S Moehlecke, A Machado, Current-induced superconductor-insulator transition in granular high-T_c superconductors, arXiv:0108311 (2001).
[41] I Felner, E Galstyan, B Lorenz, D Cao, Y S Wang, Y Y Xue, C W Chu, Magnetoresistance hysteresis and critical current density in granular RuSr_2Gd_2-xCe_xCu_2O_10-delta, Phys. Rev. B 67, 134506 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.134506
[42] S Dusari, J Barzola-Quiquia, P Esquinazi, Superconducting behavior of interfaces in graphite: Transport measurements of micro-constrictions, J. Supercond. Nov. Magn. 24, 401 (2011).
http://dx.doi.org/10.1007/s10948-010-0947-x
[43] J Barzola-Quiquia, S Dusari, G Bridoux, F Bern, A Molle, P Esquinazi, The
influence of Ga+ irradiation on the transport properties of mesoscopic conducting thin films, Nanotech. 21, 145306 (2010).
http://dx.doi.org/10.1088/0957-4484/21/14/145306
[44] V Ambegaokar, B I Halperin, Voltage due to thermal noise in the DC Josephson effect, Phys. Rev. Lett. 22, 1364 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.1364
[45] A Ballestar, J Barzola-Quiquia, T Scheike, P Esquinazi, Evidence of Josephson-coupled superconducting regions at the interfaces of highly oriented pyrolytic graphite, New J. Phys. 15, 023024 (2013).
http://dx.doi.org/10.1088/1367-2630/15/2/023024
[46] J Barzola-Quiquia, P Esquinazi, Ferromagnetic- and superconducting-like behavior of the electrical resistance of an inhomogeneous graphite flake, J. Supercond. Nov. Magn. 23, 451 (2010).
http://dx.doi.org/10.1007/s10948-009-0596-0
[47] A Ballestar, P Esquinazi, Highly oriented pyrolytic graphite TEM lamellae preparation to study transport properties of the internal interfaces, J. Visual. Exp. (in press).
[48] Y Kopelevich, J H S Torres, R R da Silva, F Mrowka, H Kempa, P Esquinazi, Reentrant metallic behavior of graphite in the quantum limit, Phys. Rev. Lett. 90, 156402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.156402
[49] H J Gardner, A Kumar, L Yu, P Xiong, M P Warusawithana, L Wang, O Vafek, D G Schlom, Enhancement of superconductivity by a parallel magnetic field in two-dimensional superconductors, Nat. Phys. 7, 895 (
2011).
http://dx.doi.org/10.1038/nphys2075
[50] J Gonzalez, F Guinea, M A H Vozmediano, Electron-electron interactions in graphene sheets, Phys. Rev. B 63, 134421 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.134421
[51] K Scharnberg, R A Klemm, p-wave superconductors in magnetic fields, Phys. Rev. B 22, 5233 (1980).
http://dx.doi.org/10.1103/PhysRevB.22.5233
[52] A Knigavko, B Rosenstein, Spontaneous vortex state and ferromagnetic behavior of type-II p-wave superconductors, Phys. Rev. B 58, 9354 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.9354
[53] N Casan-Pastor, P Gomez-Romero, L C Baker, Magnetic measurements with a squid magnetometer: Possible artifacts induced by sample holder
off centering, J. Appl. Phys. 69, 5088 (1991).
http://dx.doi.org/10.1063/1.348132
[54] A Ney, T Kammermeier, V Ney, K Ollefs, S Ye, Limitations of measuring small magnetic signals of samples deposited on a diamagnetic substrate, J. Magn. Magn. Mater. 320, 3341 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.07.008
[55] M Sawicki, W Stefanowicz, A Ney, Sensitive SQUID magnetometry for studying nanomagnetism, Semicond. Sci. Tech. 26, 064006 (2011).
http://dx.doi.org/10.1088/0268-1242/26/6/064006
[56] J Barzola-Quiquia, W Bohlmann, P Esquinazi, A Schadewitz, A Ballestar, S Dusari, L Schultze-Nobre, B Kersting, Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment, Appl. Phys. Lett. 98, 192511 (2011).
http://dx.doi.org/10.1063/1.3590924
[57] M W McElfresh, Y Yeshurun, A P Malozemoff, F Holtzberg, Remanent magnetization, lower critical fields and surface barriers in an YBa_2Cu_3O_7 crystal, Physica A 168, 308 (1990).
http://dx.doi.org/10.1016/0378-4371(90)90382-3
[58] T Scheike, W Bohlmann, P Esquinazi, J Barzola-Quiquia, A Ballestar, A Setzer, Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder, Adv. Mater. 24, 5826 (2012).
http://dx.doi.org/10.1002/adma.201202219
[59] Y Kopelevich, P Esquinazi, J Torres, S Moehlecke, Ferromagnetic- and superconducting-like behavior of graphite, J. Low Temp. Phys. 119, 691 (2000).
http://dx.doi.org/10.
1023/A:1004637814008
[60] S Senoussi, C Aguillon, S Hadjoudj, The contribution of the intergrain currents to the low field hysteresis cycle of granular superconductors and the connection with the micro- and macrostructures, Physica C 175, 215 (1991).
http://dx.doi.org/10.1016/0921-4534(91)90255-W
[61] M Borik, M Chernikov, V Veselago, V Stepankin, Anomalies of the magnetic properties of granular oxide superconductor BaPb_l-xBi_xO_3, J. Low Temp. Phys. 85, 283 (1991).
http://dx.doi.org/10.1007/BF00681973
[62] B Andrzejewski, E Guilmeau, C Simon, Modelling of the magnetic behaviour of random granular superconductors by the single junction model, Supercond. Sci. Tech. 14, 904 (2001).
http://dx.doi.org/10.1088/0953-2048/14/11/304
[63] R Prozorov, Y
Yeshurun, T Prozorov, A Gedanken, Magnetic irreversibility and relaxation in assembly of ferromagnetic nanoparticles, Phys. Rev. B 59, 6956 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.6956
[64] N B Hannay, T H Geballe, B T Matthias, K Andres, P Schmidt, D MacNair, Superconductivity in graphitic compounds, Phys. Rev. Lett. 14, 225 (1965).
http://dx.doi.org/10.1103/PhysRevLett.14.225
[65] T E Weller, M Ellerby, S S Siddharth, R P Smith, T Skippe, Superconductivity in the intercaled graphite compounds C_6Yb and C_6Ca, Nat. Phys. 1, 39 (2005).
http://dx.doi.org/10.1038/nphys0010
[66] N Emery, C Herold, M D'Astuto, V Garcia, C Bellin, J F Mareche, P Lagrange, G Loupias, Superconductivity of bulk CaC_6, Phys. Rev. Lett. 95, 035413 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.087003
[67] R R da Silva, J H S Torres, Y Kopelevich, Indication of superconductivity at 35 K in graphite-sulfur composites, Phys. Rev. Lett. 87, 147001 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.147001
[68] Y Kopelevich, R R da Silva, J H S Torres, S Moehlecke, M B Maple, High-temperature local superconductivity in graphite-sulfur composites, Physica C 408, 77 (2004).
http://dx.doi.org/10.1016/j.physc.2004.02.039
[69] I Felner, Y Kopelevich, Magnetization measurement of a possible high-temperature superconducting state in amorphous carbon doped with sulfur, Phys. Rev. B 79, 233409 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.233409
[70] Y Kopelevich, P
Esquinazi, Ferromagnetism and superconductivity in carbon-based systems, J. Low Temp. Phys. 146, 629 (2007).
http://dx.doi.org/10.1007/s10909-006-9286-5
[71] I Felner, O Wolf, O Millo, High-temperature superconductivity in sulfur-doped amorphous carbon systems, J. Supercond. Nov. Magn. 25, 7 (2012).
http://dx.doi.org/10.1007/s10948-011-1327-x
[72] M Kociak, A Y Kasumov, S Gueron, B Reulet, I I Khodos, Y B Gorbatov, V T Volkov, L Vaccarini, H Bouchiat, Superconductivity in ropes of single-walled carbon nanotubes, Phys. Rev. Lett. 86, 2416 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2416
[73] I Takesue, J Haruyama, N Kobayashi, S Chiashi, S Maruyama, T Sugai, H Shinohara, Superconductivity in entirely end-bonded multiwalled carbon nanotubes, Phys. Rev.
Lett. 96, 057001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.057001
[74] Z K Tang, L Zhang, N Wang, X X Zhang, G H Wen, G D Li, J N Wang, C T Chan, P Sheng, Superconductivity in 4 angstrom single-walled carbon nanotubes, Science 292, 2462 (2001).
http://dx.doi.org/10.1126/science.1060470
[75] G M Zhao, Y S Wang, Possible superconductivity above 400 k in carbon-based multiwall nanotubes, arXiv:0111268 (2001).
[76] E A Ekimov, V A Sidorov, E D Bauer, N N Mel'nik, N J Curro, J D Thompson, S M Stishov, Superconductivity in diamond, Nature 428, 542 (2004).
http://dx.doi.org/10.1038/nature02449
[77] Y Takano, M Nagao, I Sakaguchi, M Tachiki, T Hatano, K Kobayashi, H Umezawa, H Kawarada, Superconductivity in diamond thin films well above liquid helium
temperature, Appl. Phys. Lett. 85, 2851 (2004).
http://dx.doi.org/10.1063/1.1802389
[78] K Antonowicz, Possible superconductivity at room temperature, Nature 247, 358 (1974).
http://dx.doi.org/10.1038/247358a0
[79] K Antonowicz, The effect of microwaves on dc current in an Al-Carbon-Al sandwich, Physica Status Solidi A 28, 497 (1975).
http://dx.doi.org/10.1002/pssa.2210280214
[80] N Agrait, J Rodrigo, S Vieira, On the transition from tunneling regime to point-contact: graphite, Ultramicroscopy 42--44, Part 1, 177 (1992).
[81] R Nandkishore, L S Levitov, A V Chubukov, Chiral superconductivity from repulsive interactions in doped graphene., Nat. Phys. 8, 158 (2012).
http://dx.doi.org/10.1038/nphys2208
[82] A M Black-Schaffer, S Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite, Phys. Rev. B 75, 134512 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.134512
[83] N B Kopnin, T T Heikkila, G E Volovik, High-temperature surface superconductivity in topological flat-band systems, Phys. Rev. B 83, 220503 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.220503
[84] N Garcia, P Esquinazi, Mean field superconductivity approach in two dimensions, J. Supercond. Nov. Magn. 22, 439 (2009).
http://dx.doi.org/10.1007/s10948-009-0485-6
[85] G Profeta, M Calandra, F Mauri, Phonon-mediated superconductivity in graphene by lithium deposition, Nat. Phys. 8, 131 (2012).
http://dx.doi.org/10.1038/nphys2181
[86] B Uchoa, A H C Neto, Superconducting states of pure and doped graphene, Phys. Rev. Lett. 98, 146801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.146801
[87] N B Kopnin, E B Sonin, BCS superconductivity of Dirac electrons in graphene layers, Phys. Rev. Lett. 100, 246808 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.246808
[88] N Reyren, S Thiel, A D Caviglia, L F Kourkoutis, G Hammerl, C Richter, C W Schneider, T Kopp, A S Ruetschia, D Jaccard, M Gabay, D A Muller, J M Triscone, J Mannhart, Superconducting interfaces between insulating oxides, Science 317, 1196 (2007).
http://dx.doi.org/10.1126/science.1146006
[89] A Gozar, G Logvenov, L F Kourkoutis, A T Bollinger, L A Giannuzzi, L A Muller, I
Bozovic, High-temperature interface superconductivity between metallic and insulating copper oxides, Nature 455, 782 (2008).
http://dx.doi.org/10.1038/nature07293
[90] F Muntyanua, A Gilewski, K Nenkov, J Warchulska, A Zaleski, Experimental magnetization evidence for two superconducting phases in Bi bicrystals with large crystallite disorientation angle, Phys. Rev. B 73, 132507 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.132507
[91] F Muntyanua, A Gilewski, K Nenkov, A Zaleski, V Chistol, Superconducting crystallite interfaces with T_c up to 21 K in Bi and Bi-Sb bicrystals of inclination type, Solid State Commun. 147, 183 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.05.024
[92] Y Kopelevich, P Esquinazi, Graphene physics in graphite, Adv. Mater. (Weinheim, Ger.)
19, 4559 (2007).
http://dx.doi.org/10.1002/adma.200702051
[93] W A Mu-oz, L Covaci, F Peeters, Tight-binding description of intrinsic superconducting correlations in multilayer graphene, Phys. Rev. B 87, 134509 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.134509
[94] Y Kawashima, Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface, AIP Advances 3, 052132 (2013).
http://dx.doi.org/10.1063/1.4808207