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Critical behavior of rumor propagation on random networks of cliques

Lucas A Sobehart,1 Damián H Zanette1,2∗

We disclose a critical phenomenon induced by structural properties of the contact pattern
in a stylized model of rumor propagation over a population of agents. The contact pattern
is given by a random network of cliques, formed by fully interconnected groups of nodes
of identical size with randomly distributed connections between groups. As demonstrated
numerically using finite-size scaling analysis, the process exhibits a critical transition be-
tween a regime where the rumor remains confined to a negligible part of the population
and a regime where it attains a finite portion of the system. We determine the critical
point and the critical exponent of the transition for different clique sizes. The phenomenon
is analogous to that observed for the same kind of process in Watts-Strogatz small-world
networks, and is likely due to the combination of large clustering and short mean geodesic
distances that also characterizes random networks of cliques.

I Introduction

The behavior of dynamical processes in systems
of interacting agents can strongly depend on the
structure of their interaction patterns. The inter-
play between underlying geometrical and/or topo-
logical properties and emerging collective dynamics
in such systems has been a subject of primary in-
terest since the inception of network science [1]. In
the vast corpus of research dealing with this ques-
tion, some of the earliest work focused on the ef-
fects of network structure on percolation and epi-
demics spreading [2–4], as reviewed in Ref. 5. More
recently, much attention has been devoted to the
cases of synchronization processes [6–8], neuronal
dynamics [9–11], and ecological and biochemical
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systems [12–14], among others. In Refs. 15 and
16, it was shown that a stylized process of rumor
propagation evolving on a Watts-Strogatz small-
world network [17] exhibits a critical transition as
the topological disorder in the network increases.
Concretely, the rumor remains confined to a neg-
ligible part of the network with low disorder and
reaches a finite portion if the disorder overcomes a
certain critical threshold.

In a recent contribution [18], we have intro-
duced a class of networks consisting of ensem-
bles of cliques –namely, fully interconnected, rel-
atively small groups of nodes– sparsely connected
to each other by randomly distributed links. These
random networks of cliques (RNoCs) aim to cap-
ture a widespread topological feature of real-life
interaction networks, specifically, the segregation
of agents in compact groups with relatively sparse
connections between groups. This kind of archi-
tecture is found in a variety of socioeconomic com-
plexes, where division into communities plays cru-
cial roles [19–23], and is also observed in other nat-
ural [24–26] and artificial systems [27]. In RNoCs,
large interconnectivity between nodes inside cliques
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ensures a high degree of clustering, while random
inter-clique connections determine short average
geodesic distances, typically of the order of the log-
arithm of the network size [18]. The combination
of large clustering and short distances is diagnostic
of the small-world nature of RNoCs, much as in the
classic Watts-Strogatz model [17,28].

In this paper, we disclose a critical phenomenon
in a model of rumor propagation on RNoCs, quali-
tatively similar to that observed in Watts-Strogatz
networks, as quoted above [15,16]. The transition is
induced by the density of inter-clique connections,
which is one of the basic structural properties of
the underlying network. Even when the number of
inter-clique links is enough to connect most of the
network –i.e. when a giant component is already
present– their density must exceed a certain criti-
cal value to allow the rumor to reach a substantial
portion of the system. In the next section, we intro-
duce the subclass of RNoCs in which we study this
phenomenon and quantitatively characterize their
structural features. In Section III, we introduce
the dynamical rules that define the model of ru-
mor propagation and present results obtained from
numerical simulations showing the existence of two
well-differentiated regimes in the process, depend-
ing on the density of inter-clique links. In Section
IV, we perform the finite-size scaling analysis that
demonstrates the critical nature of the transition
between the two regimes, obtaining estimations for
the critical point and exponents. Finally, Section
V is devoted to a summary of results and to our
concluding remarks.

II Random networks of cliques
(RNoCs)

A random network of cliques (RNoC) is constructed
by first taking a collection of Q cliques. In the sim-
plest version, all cliques are equal in size, each con-
taining m nodes (m ≥ 3), so that the total network
size is N = mQ. Then, inter-clique links are estab-
lished randomly by connecting pairs of nodes in dif-
ferent cliques, with the condition that at most one
inter-clique link reaches each node. If γ is the prob-
ability that a node is reached by an inter-clique link,
the expected total number of these links is γN/2.
The total number of links, including both intra- and
inter-clique links, is, on average, (m − 1 + γ)N/2.

Figure 1: Main panel: A random network of cliques
formed by Q = 8 cliques of size m = 5, and 8 inter-
clique links (γ = 0.4). The inset shows the surrogate
network, where each clique has been replaced by a sin-
gle node, keeping the inter-clique links as connections
between nodes.

The condition that each node is connected to at
most one inter-clique link facilitates the analyti-
cal computation of the RNoC structural properties
[18], quoted below.

As an illustration, the main panel of Fig. 1 shows
a small RNoC, with Q = 8, m = 5, and 8 inter-
clique links, corresponding to γ = 0.4. The net-
work in the inset is a surrogate graph where each
clique of the RNoC has been replaced by a sin-
gle node, preserving the inter-clique links between
nodes. By construction, the surrogate graph is an
Erdős-Rényi random network, to which a variety of
exact theoretical results are applicable. Note that,
as shown in the figure, the surrogate graph can have
multiple connections between pairs of nodes. This
is not an inconvenience by itself, as the theory of
random networks applies to such a situation [1]. In
any case, the probability of multiple connections
between cliques is of order Q−1, and therefore de-
creases as larger networks are considered.

The degree distributions [29] of the RNoC and
its surrogate graph –respectively, gk and gsk– are

gk =
γk

m
δk,m +

(1 − γ)(k + 1)

m
δk+1,m, (1)

where δi,j is Kronecker delta, and

gSk =

(
m

k

)
γk(1 − γ)m−k, (2)

for 0 ≤ k ≤ m. Since each clique is internally fully
connected, the overall connectivity of the RNoC is
determined by that of the surrogate graph and, con-
sequently, by the degree distribution gSk . Applying
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the formalism of generating functions [30], we find
that, in the limit Q → ∞, a giant component exists
if γ > γ0, with

γ0 =
1

m− 1
. (3)

For γ > γ0, the fraction of the network in the giant
component is given by

G = 1 − um/(m−1), (4)

where u is the nontrivial (u ̸= 1) solution to u =
[1 + γ(u− 1)]m−1.

In the limit of large Q, clustering [29] can be
exactly quantified for RNoCs. The mean and the
global clustering coefficients are, respectively,

CM = 1 − 2γ

m
, CG =

m− 2

m− 2 + 2γ
. (5)

Note that CM and CG are functionally independent
quantities, with CM ≥ CG for fixed m. Both are
decreasing functions of γ, starting at CM = CG = 1
for γ = 0 and dropping to CM = CG = 1 − 2/m
for γ = 1. Moreover, they approach each other in
the limit of large m. Generally, they have rather
large values, with a minimum of CM = CG = 1/3
at m = 3 and γ = 1. This high level of clustering,
even for large densities of the randomly distributed
inter-clique links, is a direct consequence of the full
connectivity inside each clique.

The geodesic distance between pairs of nodes [29]
in the RNoC, given by the number of links along
the shortest path joining the two nodes, is also con-
trolled by the surrogate graph. In fact, among the
N(N−1)/2 pairs of nodes all over the network, the
number of pairs where the two nodes belong to the
same clique is of order Q while the number of pairs
with nodes in different cliques is of order Q2. The
latter, thus, dominate the average geodesic distance
L in large networks. In turn, if the nodes belong
to two different cliques, their geodesic distance is
essentially twice the geodesic distance between the
surrogate nodes of the two cliques. Indeed, for each
link along a path in the surrogate graph, one addi-
tional link is required in the original RNoC to travel
between any two nodes inside each clique. Conse-
quently, since in an Erdős-Rényi random network
the average geodesic distance is of the order of the
logarithm of the network size, in the RNoC we have
L ∼ logQ as well. The same relation to Q holds for

the network diameter, given by the longest geodesic
distance between pairs of nodes.

As commented in the Introduction, the combina-
tion of an average geodesic distance that grows as
the logarithm of the network size, and large clus-
tering coefficients which, as in Eq. (5), are indepen-
dent of size when the network is large, is a clue to
the small-world nature of RNoCs. These are the
same structural properties that identify, character-
istically, the Watts-Strogatz construction [17].

Two other structural properties that can be given
analytical values for RNoCs are assortativity [29],

r =
2m2(3 − 2γ)(m− 1 + γ) + mγ(1 − γ)2

mγ(m− 1)(1 − γ)
, (6)

and modularity [29],

q ≈ m(m− 1)

m(m− 1 + γ)
. (7)

For the latter, the result is an approximation for
large Q, assuming that the optimal modular par-
tition of the network is given by the division into
cliques [18].

In the next section, we study a contact process
–mimicking the propagation of a rumor– in a popu-
lation where the contact pattern between agents is
an RNoC of the type defined above. In particular,
we focus on the effectiveness of propagation, mea-
sured by the fraction of the system reached by the
rumor, as a function of the density of inter-clique
links γ and for various values of the clique size m.

III Rumor propagation on RNoCs:
dynamical rules and numerical
results

In the last two decades, a wide variety of rumor
propagation models on networks have been ad-
vanced, motivating much subsequent work (for a
recent review, see Ref. 31). All these variants are
based on some long-established proposals [32–34],
and bear close relation to well-known epidemiolog-
ical models, especially, of the SIR type [35]. At any
given time during the evolution, each node in the
network is in one of three states which, by analogy
with SIR epidemiological models, are called suscep-
tible (S), infected (I), and recovered (R). Suscepti-
ble individuals have not heard the rumor yet, in-
fected individuals have heard the rumor and are
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willing to transmit it, and recovered individuals
have heard the rumor but have lost interest and
do not transmit it.

The process runs as follows: At each time step,
an infected node and one of its neighbors –say, i
and j, respectively– are chosen at random. If j is
susceptible, it becomes infected by rumor transmis-
sion. In this case, since communication between the
two nodes has already occurred, the pair (i, j) will
never be chosen again in the subsequent evolution.
If, on the other hand, j, having already heard the
rumor, is either infected or recovered, , i then be-
comes recovered due to loss of interest. Moreover, if
i has been fully disconnected from the network due
to previous interactions, it also becomes recovered.
In all cases, the time step is assigned a duration
N−1

I , where NI is the number of infected nodes be-
fore the interaction occurs. Thus, on average, each
infected node undergoes one interaction event per
time unit. Initially, all nodes are susceptible ex-
cept for a randomly chosen one, which is infected.
The process of rumor propagation ends when no
infected nodes remain in the population, and ev-
ery node is either susceptible or recovered. Note
that the main difference between these dynamical
rules of rumor propagation and those of standard
SIR models resides in the fact that the transition
between the infected and the recovered states re-
quires an interaction between agents, while in epi-
demiological dynamics it occurs spontaneously.

A suitable measure of the effectiveness of rumor
propagation on the RNoC is given by the fraction
of recovered nodes, nR, at the end of the evolution.
It gives the proportion of the population that has
heard the rumor at some point during the process.
If propagation is limited to an isolated clique, not
connected to other cliques, it can be easily seen
that, necessarily, nR = 1 for cliques of size m = 3
or 4. As m grows, the average of nR over real-
izations of the process decreases, approaching an
asymptotic value of about 0.79 for large m.

For comparison with these values of nR, we men-
tion that, in a fully connected network, the fraction
of the population reached by the rumor is nR ≈ 0.8
[34]. Since, on average, each infected node trans-
mits the rumor just one time along the whole pro-
cess, the same figure for nR is expected in Erdős-
Rényi random networks with a well-developed gi-
ant component, i. e. with a moderately large mean
number of neighbors per node [1].

Figure 2: Total evolution time T vs. final fraction of
recovered nodes nR obtained in 105 realizations of the
rumor propagation model on the giant component of
RNoCs with Q = 103, for clique size m = 3 and four
values of the density of inter-clique connections γ, in
log-log scales. The straight lines have a slope of 0.7.

To assess the properties of rumor propagation
on RNoCs, we ran series of 105 realizations of the
process over the giant (largest) component of net-
works formed by Q = 103 cliques, for various val-
ues of the size of individual cliques, m, and of the
density of inter-clique connections, γ (see Section
II). Given m, the values of γ are chosen well above
γ0 = (m − 1)−1, in the region where the giant
component comprises a large part of the network
[cf. Eq. (3)]. In each realization, we measured the
fraction nR = NR/NG, with NR being the number
of recovered nodes at the end of the evolution and
NG the number of nodes in the giant component.

In Fig. 2, we plot the pairs (nR, T ) in the case
of m = 3, for four values of γ. For γ = 0.67, re-
sults are confined to small values of nR, mostly be-
low nR = 0.1, and times which rarely reach above
T = 100. On average, there is a well-defined alge-
braic relation between the two quantities, T ∝ np

R

with p = 0.700(1), as illustrated by the straight
line. As γ grows and the network becomes better
connected, the distribution of points on the plane
(nR, T ) becomes progressively bimodal, giving rise
to two separate clouds. Increasingly few points re-
main in the original cloud, which preserves the al-
gebraic relation between nR and T . Most realiza-
tions, in fact, now belong to the new cloud, with
substantially higher values of nR and maximal val-

160003-4



Papers in Physics, vol. 16, art. 160003 (2024) / L A Sobehart & D H Zanette

10−2

10−1

100

101

0.0 0.2 0.4 0.6 0.8
10−2

10−1

100

101

0.0 0.2 0.4 0.6 0.8

0.67

0.83

0.94

 

 

fre
qu

enc
y

γ = 1m  = 3

0.67
0.83

0.94

 

 

γ = 1m  = 5

0.5

0.7

0.9

 
 

fre
qu

enc
y

n R

γ = 1m  = 10

n R

0.5

0.7

0.9

 

 

γ = 1m  = 15

Figure 3: Histograms of the final fraction of recovered
nodes nR for four values of the clique size m, and four
values of the density of inter-clique connections γ for
eachm. Data obtained from 105 realizations as in Fig. 2
for each parameter set.

ues of T situated between 200 and 300. For γ ≲ 1,
hence, realizations are divided into two categories.
In some of them, the rumor reaches a relatively
small portion of the network, typically below 10%,
and remains confined to a few cliques. More fre-
quently, however, the rumor is eventually heard by
more than 60% of the population. Interestingly,
while the two clouds are detached from each other
in nR, they have a non-negligible overlap in T ,
around T = 100.

The transition between unimodal and bimodal
distributions in the final number of recovered nodes
as the network connectivity grows is also observed
for other clique sizes. Figure 3 shows histograms
of nR for four values of m, and four values of γ
for each m, as obtained from a series of 105 re-
alizations for each parameter set. The progressive
development of a maximum at large values of nR as
γ increases is apparent in all cases. Note that the
appearance of the maximum occurs at lower values
of γ for larger clique sizes m. This effect can be
ascribed to the fact that the larger the value of m,
the larger the inter-clique connectivity for a given
value of γ –i.e. the larger the connectivity in the
surrogate network; cf. Eq. (2). At the same time,
as discussed above for isolated cliques, the fraction
of nodes within each clique that is expected to be
reached by the rumor decreases with m. A con-
sequence of the combination of these two opposite

trends is that the average value of nR over realiza-
tions, which we denote as ⟨nR⟩, can depend non-
monotonically on m for intermediate values of γ.
This is illustrated in Fig. 4, which shows ⟨nR⟩ as a
function of γ for the same values of m as in Fig. 3.
For γ = 0.9, for instance, ⟨nR⟩ first increases and
then decreases with m.

In any case, the behavior of ⟨nR⟩ with γ always
shows a passage between a regime of low values for
small γ, corresponding to the unimodal distribu-
tions of Fig. 3, to a rather fast growth for large γ,
determined by the appearance of the large-nR peak
in the distributions. This behavior may be point-
ing to the occurrence of a critical transition as γ
grows, much as observed in Watts-Strogatz small-
world networks for increasing disorder [15, 16]. In
the next section, indeed, we show that numerical
evidence supports the existence of a critical point,
and we present an estimation of the critical param-
eters associated with the transition.

IV Critical transition in rumor
propagation: finite-size scaling

To assess whether a critical transition occurs in the
mean final fraction of recovered nodes ⟨nR⟩ as a
function of the density of inter-clique links γ, we
apply finite-size scaling analysis [36]. This requires
studying the behavior of ⟨nR⟩ versus γ as the sys-
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Figure 4: Mean fraction of final recovered nodes ⟨nR⟩
as a function of the density of inter-clique connections
γ, for four values of the clique size, averaged over 105

realizations as in Fig. 2.
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Figure 5: Mean final fraction of recovered nodes ⟨nR⟩
as a function of the density of inter-clique links γ, for
six values of the number of cliques Q, in the case of
cliques of size m = 5.

tem size is varied. We illustrate the procedure with
the case m = 5. Figure 5 shows results for six val-
ues of the number of cliques Q.

Following the methodology of finite-size scaling
analysis, we assume that near the putative critical
value of γ, γ ≈ γc, and for sufficiently large net-
works, Q ≫ 1, the order parameter ⟨nR⟩ satisfies

Qαβ⟨nR⟩ = F
(
Qβ |γ − γc|

)
, (8)

with a yet-unknown function F and suitable values
of the exponents α and β. This ansatz implies that,
for Q → ∞, ⟨nR⟩ behaves as

⟨nR⟩ ∝ |γ − γc|α (9)

near the transition. Thus, α is the main critical
exponent, controlling the behavior of ⟨nR⟩ in the
vicinity of the critical point γc. For γ = γc, Eq. (8)
predicts that ⟨nR⟩ decays as a power of the network
size:

⟨nR⟩ = F (0)Q−αβ . (10)

The exponent β can be seen to control the di-
vergence of the correlation length near the critical
point [36]. Equation (10) makes it possible to esti-
mate γc by studying how ⟨nR⟩ behaves with Q as
γ is varied.

Figure 6 shows numerical results for ⟨nR⟩ as a
function of Q for several values of γ. Two different
behaviors are apparent. As Q grows, ⟨nR⟩ tends to
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Figure 6: Mean final fraction of recovered nodes ⟨nR⟩
as a function of the number of cliques Q, for different
values of the density of inter-clique links γ. The bold
segment, with slope 0.55, signals the transition between
two different behaviors for large Q. For smaller and
large γ, ⟨nR⟩ approaches zero and a positive constant,
respectively.

approach a constant value for large γ, while it de-
cays to zero for small γ. The two regimes are sepa-
rated by a zone where, in accordance with Eq. (10),
⟨nR⟩ displays a power-law decay, as demonstrated
by the bold straight line. From these results, the
critical point γc turns out to be bound to the inter-
val (0.69, 0.71). Additionally, a least-square linear
fit in the log-log plot of the figure makes it possible
to evaluate the power-law exponent as αβ ≈ 0.55.

Once these estimates for γc and αβ have been
obtained, we go back to our numerical results for
⟨nR⟩ as a function of γ for different values of Q,
shown in Fig. 5. Equation (8) implies that, for an
appropriate choice of the exponent β, they should
collapse onto a single curve if Qαβ⟨nR⟩ is plotted
versus Qβ |γ−γc|. The resulting curve is, precisely,
the graph of the function F . Tuning parameters to
obtain the best collapse makes it possible in turn
to improve the estimations for the critical point γc
and the decay exponent αβ.

The main panel of Fig. 7 shows the outcome of
this procedure. Our final estimation for the critical
point and the critical exponents was γc = 0.71(1),
α = 1.3(1), and β = 0.42(4), respectively. Er-
rors were evaluated from an appraisal of the col-
lapse quality as the parameters were slightly varied
around their optimal values. The same method was
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Figure 7: Main panel: Collapse of the data in the
main panel of Fig. 5 over the plane spanned by the size-
rescaled variables Qβ |γ − γc| and Qαβ⟨nR⟩, for γc =
0.71, α = 1.3 and β = 0.42. Inset: Estimations for
the critical point γc and the main critical exponent α
as functions of the clique size m. Dashed curves show
the results of least-square fittings with exponentially
saturating functions for both datasets.

applied to another three values of the clique size
m, obtaining the final results reported in Table 1.
Within measurement uncertainties, the exponent β
shows a negligible dependence on m. On the other
hand, both γc and α exhibit a tendency to saturate
as the clique size grows, as shown in the inset of
Fig. 7. A phenomenological fitting of an exponen-
tial function of the form y = y0+a exp(−bx) yields,
for the asymptotic values at large m, γasymp

c =
0.67(1) and αasymp = 1.55(5).

m γc α β
3 0.82(1) 1.1(1) 0.42(4)
5 0.71(1) 1.3(1) 0.42(4)
7 0.68(1) 1.45(5) 0.39(3)
10 0.67(1) 1.5(1) 0.40(3)

Table 1: The critical value of the density of inter-clique
links, γc, and the critical exponents α and β, obtained
from finite-size scaling analysis for four values of the
clique size m. The results for γc and α are plotted in
the inset of Fig. 7.

V Conclusion

We have shown that a model process of rumor prop-
agation between agents on a random network of
cliques (RNoC) undergoes a critical transition in-
duced by a change in the network structure. Specif-
ically, as the density of inter-clique links increases
and, hence, the network connectivity grows, the
dynamics shift from a regime where the rumor re-
mains confined to a negligible domain around its
source to a regime where it spreads across a fi-
nite fraction of the population. The critical na-
ture of the transition has been assessed by employ-
ing finite-size scaling analysis, which also made it
possible to find the critical points and exponents.
Both quantities depend on the size of individual
cliques –and are thus not universal– approaching
well-defined asymptotic values as the cliques be-
come larger.

To keep the number of parameters in the prob-
lem at its minimum, we have considered random
networks of cliques where all cliques have the same
size. In the original formulation, however, these
networks may be formed by cliques of different
sizes, drawn at random from a prescribed distri-
bution [18]. We have performed several series of
simulations, not presented here, to verify that qual-
itatively the same behavior is obtained when clique
sizes are distributed. With exponentially decaying
distributions for clique sizes larger than or equal
to three, the presence of large cliques implies a de-
crease in the effectiveness of propagation, much as
that shown in Fig. 4, as the size grows sufficiently.

The critical phenomenon disclosed in this con-
tribution is qualitatively the same as that which is
found to occur in a similar model of rumor prop-
agation on Watts-Strogatz small-world networks
[15, 16]. In both models, the transition between
rumor confinement and spreading is triggered by
a growth in the degree of disorder of the under-
lying contact pattern. While in RNoCs disorder
grows with the density of inter-clique connections
γ, in small-world networks disorder is determined
by the density of shortcuts (usually denoted as p
[17]) between otherwise distant zones of the net-
work. Because of their different meaning, a quan-
titative comparison between the critical values of
γ and p is not possible. However, it is found in
both cases that the transition threshold decreases
when the average number of neighbors per node in-
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creases (in the case of RNoCs, when m grows). On
the other hand, the main critical exponent of the
transition (α, in the present case) can be directly
compared between the two models. It turns out
that, in RNoCS, the critical exponent is smaller
than in small-world networks, thus corresponding
to a sharper growth of the order parameter just
above the transition. Since the exponent is larger
than one in both models, the two cases correspond
to transitions where the first derivative of the order
parameter with respect to the control parameter is
continuous at the critical point.

The qualitative likeness between the critical phe-
nomena found in RNoCs and small-world networks
should be ascribed to some sort of underlying sim-
ilarity between the two classes of contact pat-
terns. As we have discussed in Section II, in fact,
random networks of cliques do exhibit the struc-
tural properties that define small-world architec-
tures, namely, large clustering induced by the high
connectivity inside cliques, and short geodesic dis-
tances inherited from the random pattern of inter-
clique connections. Such an analogy triggers the
conjecture that the kind of critical transition ob-
served in these models –and, probably, in a wider
class of contact processes inspired by epidemiology
and other transmission phenomena– may be sys-
tematically induced by the growth of disorder in
the contact network, at an intermediate point along
the resulting simultaneous decrease of clustering
and geodesic distances. It remains to be verified
whether other critical-like phenomena induced by
disorder in small-world architectures –such as the
onset of epidemiological oscillations in SIRS models
[3]– also occur in populations interacting through
random networks of cliques. The implications of
these phenomena in more realistic settings are open
to further research.
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