[1] Z. N. Jaf, H. A. Miran, Z. T. Jiang, M. Altarawneh, Molybdenum nitrides from structures to industrial applications, Rev. Chem. Eng., 39(3), 329-361, (2023).
https://doi.org/10.1515/revce-2021-0002

[2] Z. N. Jaf, M. Altarawneh, H. A. Miran, Z.-T. Jiang, Geometries, electronic properties and stability of molybdenum and tungsten nitrides low-index surfaces, Mater. Res. Express, 5(12), 126402, (2018).
https://doi.org/10.1088/2053-1591/aadeb6

[3] H. A. Miran, M. Altarawneh, Z. N. Jaf, B. Z. Dlugogorski, Z.-T. Jiang, Structural, electronic and thermodynamic properties of bulk and surfaces of terbium dioxide (TbO₂), Mater. Res. Express, 5(8), 085901, (2018).
https://doi.org/10.1088/2053-1591/aad0e0

[4] D. S. Shaker, N. K. Abass, R. A. Ulwali, Preparation and study of the structural, morphological and optical properties of pure tin oxide nanoparticle doped with Cu, Baghdad Sci. J., 19(3), 0660-0660, (2022).
https://doi.org/10.21123/bsj.2022.19.3.0660

[5] M. A. Abood, B. A. Hasan, A comparison study the effect of doping by Ga₂O₃ and CeO₂ on the structural and optical properties of SnO₂ thin films, Iraqi J. Sci., 1675-1690, (2023).
https://doi.org/10.24996/ijs.2023.64.4.10

[6] H. D. Awad, R. A. Al Anssari, A. H. R. Al-Sarraf, A study of the structural and optical properties of SnS:F prepared by chemical spray pyrolysis technique, Baghdad Sci. J., 11(2), 518-526, (2014).
https://doi.org/10.21123/bsj.2014.11.2.518-526

[7] S. A. Hamdan, Characterization study of neodymium doped tin oxide films for optoelectronic applications, Iraqi J. Sci., 2479-2489, (2024).
https://doi.org/10.24996/ijs.2024.65.5.12

[8] M. Rizwan, H. M. Naeem Ullah, S. S. A. Gillani, M. Farman, Z. Usman, Z. ur Rehman, Computational systematic study of pressure driven changes in electronic, optical, elastic, mechanical, thermodynamic and thermoelectric properties of CaZrO₃ for optoelectronic and thermoelectric applications, J. Phys. Chem. Solids, 112150, (2024).
https://doi.org/10.1016/j.jpcs.2024.112150

[9] M. Abaid Ullah, M. Rizwan, K. N. Riaz, Innovative complex perovskites for efficient hydrogen evolution: A DFT-based design strategy, Mater. Sci. Eng. B, 301, 117195, (2024).
https://doi.org/10.1016/j.mseb.2024.117195

[10] J. Gao, D. Xue, W. Liu, C. Zhou, X. Ren, Recent progress on BaTiO₃-based piezoelectric ceramics for actuator applications, Actuators, 6(3), 24, (2017).
https://doi.org/10.3390/act6030024

[11] A. Boubaia, A. Assali, S. Berrah, H. Bennacer, I. Zerifi, A. Boukortt, Band gap and emission wavelength tuning of Sr-doped BaTiO₃ (BST) perovskites for high-efficiency visible-light emitters and solar cells, Mater. Sci. Semicond. Process., 130, 105837, (2021).
https://doi.org/10.1016/j.mssp.2021.105837

[12] F. Yang, S. Lin, L. Yang, J. Liao, Y. Chen, C.-Z. Wang, First-principles investigation of metal-doped cubic BaTiO₃, Mater. Res. Bull., 96, 372-378, (2017).
https://doi.org/10.1016/j.materresbull.2017.03.023

[13] I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, et al., Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials, Nature, 503(7477), 509-512, (2013).
https://doi.org/10.1038/nature12622

[14] F. Wang, I. Grinberg, L. Jiang, S. M. Young, P. K. Davies, A. M. Rappe, Materials design of visible-light ferroelectric photovoltaics from first principles, Ferroelectrics, 483(1), 1-12, (2015).
https://doi.org/10.1080/00150193.2015.1058096

[15] S. Hao, M. Yao, G. Vitali-Derrien, P. Gemeiner, M. Otoni, P. Ruello, H. Bouyanfif, P.-E. Janolin, B. Dkhil, C. Paillard, Optical absorption by design in a ferroelectric: co-doping in BaTiO₃, J. Mater. Chem. C, 10(1), 227-234, (2022).
https://doi.org/10.1039/D1TC04250E

[16] M. Irshad, Q. tul Ain, M. Zaman, M. Z. Aslam, N. Kousar, M. Asim, M. Rafique, K. Siraj, A. N. Tabish, M. Usman, et al., Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future, RSC Adv., 12(12), 7009-7039, (2022).
https://doi.org/10.1039/D1RA08185C

[17] Z. Li, Y. Sun, H. Zhao, Enhanced optical properties of lead-free double perovskite Cs₂AgBiBr₆ nanocrystals by doping of Na ions, Solid State Commun., 373, 115288, (2023).
https://doi.org/10.1016/j.ssc.2023.115288

[18] Z. Chen, S. Zhao, L. Zhou, J. Li, First-principles investigations on the physical properties of the double perovskite Cs₂OsI₆, Solid State Commun., 389, 115556, (2024).
https://doi.org/10.1016/j.ssc.2024.115556

[19] R. Kundara, S. Baghel, Performance analysis of LaFeO₃ perovskite solar cells: A theoretical and experimental study, Solid State Commun., 115590, (2024).
https://doi.org/10.1016/j.ssc.2024.115590

[20] A. Rajagopal, K. Yao, A. K.-Y. Jen, Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering, Adv. Mater., 30(32), 1800455, (2018).
https://doi.org/10.1002/adma.201800455

[21] Z. N. Jaf, Z.-T. Jiang, H. A. Miran, M. Altarawneh, J.-P. Veder, M. Minakshi, Z.-f. Zhou, H. N. Lim, N. M. Huang, B. Z. Dlugogorski, Physico-chemical properties of CrMoN coatings-combined experimental and computational studies, Thin Solid Films, 693, 137671, (2020).
https://doi.org/10.1016/j.tsf.2019.137671

[22] H. A. Miran, M. Altarawneh, Z. N. Jaf, M. M. Rahman, M. H. Almatarneh, Z.-T. Jiang, Influence of the variation in the Hubbard parameter (U) on activation energies of CeO₂-catalysed reactions, Can. J. Phys., 98(4), 385-389, (2020).
https://doi.org/10.1139/cjp-2019-0065

[23] H. A. Miran, Z. N. Jaf, I. H. Khaleel, A. A. Alkhafaji, Photocatalytic and optical performances of CeO₂ by substitution of titanium, Phys. Chem. Res., 9(4), 553-564, (2021).
https://doi.org/10.5277/SGP200907

[24] X. Guo, Y. Sun, L. Liu, Z. Yu, J. Liu, Effect of different ionic valence state doping on the structure and characteristic of BiFeO₃-BaTiO₃-based ceramics, Int. J. Appl. Ceram. Technol., 21(3), 1688-1699, (2024).
https://doi.org/10.1111/ijac.14666

[25] Md. Moniruddin, B. Ilyassov, X. Zhao, E. Smith, T. Serikov, N. Ibrayev, R. Asmatulu, N. Nuraje, Recent progress on perovskite materials in photovoltaic and water splitting applications, Mater. Today Energy, 7, 246-259, (2018).
https://doi.org/10.1016/j.mtener.2017.10.005

[26] B. Sun, G. Zhou, L. Sun, H. Zhao, Y. Chen, F. Yang, Y. Zhao, Q. Song, ABO₃ multiferroic perovskite materials for memristive memory and neuromorphic computing, Nanoscale Horiz., 6(12), 939-970, (2021).
https://doi.org/10.1039/D1NH00292A

[27] C. J. Rhodes, Perovskites and their potential use in solar energy applications, Sci. Prog., 97(3), 279-287, (2014).
https://doi.org/10.3184/003685014X14098307810589

[28] A. Fatima, H. M. Naeem Ullah, M. Rizwan, S. Maqbool, F. Idrees, Z. Usman, Theoretical description of structural, electronic, elastic, mechanical, and optical response of Ba₁₋ₓCdₓTiO₃ for optoelectronic applications, Mater. Today Commun., 35, 105925, (2023).
https://doi.org/10.1016/j.mtcomm.2023.105925

[29] M. Rizwan, H. Naeem, H. M. Naeem Ullah, Z. Usman, N. Amjed, M. Abid, Fine band gap tuning via Sr incorporated PbTiO₃ for optoelectronic application: a DFT study, Opt. Quantum Electron., 56(1), 122, (2024).
https://doi.org/10.1007/s11082-023-05775-9

[30] C. Chen, Q. Ma, F. Liu, J. Gao, X. Li, S. Sun, H. Yao, C. Liu, J. Young, W. Zhang, Photocatalytically reductive defluorination of perfluorooctanoic acid (PFOA) using Pt/La₂Ti₂O₇ nanoplates: experimental and DFT assessment, J. Hazard. Mater., 419, 126452, (2021).
https://doi.org/10.1016/j.jhazmat.2021.126452

[31] Q. Ma, W. Zhang, J. Young, Effect of single atom platinum (Pt) doping and facet dependent on the electronic structure and light absorption of lanthanum titanium oxide (La₂Ti₂O₇): A density functional theory study, Surf. Sci., 715, 121949, (2022).
https://doi.org/10.1016/j.susc.2021.121949

[32] L. Lv, H.-D. Yang, Q.-W. Chen, H. Fan, J.-P. Zhou, La₂Ti₂O₇ nanosheets modified by Pt quantum dots for efficient NO removal avoiding NO₂ secondary pollutant, Environ. Res., 223, 115441, (2023).
https://doi.org/10.1016/j.envres.2023.115441

[33] Z. P. Tshabalala, J. Kano, H. C. Swart, D. E. Motaung, Influence of Pt-loading on the energy band gap and gas sensing of titanium perovskite, Physica B Condens. Matter, 676, 415687, (2024).
https://doi.org/10.1016/j.physb.2024.415687

[34] M. Q. Saadon, H. A. Miran, Computational modeling study on the physical properties of Pd doped BaTiO₃ perovskite, Comput. Condens. Matter, 39, e00906, (2024).
https://doi.org/10.1016/j.cocom.2024.e00906

[35] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater., 220(5-6), 567-570, (2005).
https://doi.org/10.1524/zkri.220.5.567.65075

[36] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14(11), 2717, (2002).
https://doi.org/10.1088/0953-8984/14/11/301

[37] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77(18), 3865-3868, (1996).
https://doi.org/10.1103/PhysRevLett.77.3865

[38] J. P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B, 54(23), 16533-16539, (1996).
https://doi.org/10.1103/PhysRevB.54.16533

[39] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(12), 5188-5192, (1976).
https://doi.org/10.1103/PhysRevB.13.5188

[40] M. G. Brik, First-principles study of the electronic and optical properties of CuXS₂ (X = Al, Ga, In) and AgGaS₂ ternary compounds, J. Phys. Condens. Matter, 21(48), 485502, (2009).
https://doi.org/10.1088/0953-8984/21/48/485502

[41] H. A. J. Miran, Z. N. Abdullah, M. Altarawneh, M. M. Rahman, A. T. Al-Bayati, E. M.-T. Salman, First-principles analysis of Cr-doped SrTiO₃ perovskite as optoelectronic materials, Iran. J. Mater. Sci. Eng., 20(1), (2023).
https://doi.org/10.1515/ijmse-2023-0001

[42] M. Rizwan, A. Ali, Z. Usman, N. R. Khalid, H. B. Jin, C. B. Cao, Structural, electronic and optical properties of copper-doped SrTiO₃ perovskite: A DFT study, Physica B: Condensed Matter, 552, 52–57, (2019).
https://doi.org/10.1016/j.physb.2018.09.022

[43] A. Rached, M. A. Wederni, K. Khirouni, S. Alaya, R. J. Martín-Palma, J. Dhahri, Structural, optical and electrical properties of barium titanate, Mater. Chem. Phys., 267, 124600, (2021).
https://doi.org/10.1016/j.matchemphys.2021.124600

[44] M. Tihtih, J. E. F. M. Ibrahim, M. A. Basyooni, W. Belaid, L. A. Gömze, I. Kocserha, Structural, optical, and electronic properties of barium titanate: experiment characterization and first-principles study, Mater. Tech., 37(14), 2995–3005, (2022).
https://doi.org/10.1080/10667857.2022.2107473

[45] F. Yang, L. Yang, C. Ai, P. Xie, S. Lin, C.-Z. Wang, X. Lu, Tailoring bandgap of perovskite BaTiO₃ by transition metals co-doping for visible-light photoelectrical applications: A first-principles study, Nanomaterials, 8(7), (2018).
https://doi.org/10.3390/nano8070455

[46] M. Tihtih, J. E. Ibrahim, M. A. Basyooni, M. Kabatas, R. Ennadir, W. Belaid, M. Abdelfattah, I. Hussainova, G. Pszota, I. Kocserha, Enhanced optical and thermal conductivity properties of barium titanate ceramic via strontium doping for thermo-optical applications, Opt. Quantum Electron., 55, 226, (2023).
https://doi.org/10.1007/s11082-022-04516-8

[47] Ferroelectric-like metallic state in electron-doped BaTiO₃, Sci. Rep., 5, (2015).
https://doi.org/10.1038/srep13207

[48] Z. N. Jaf, H. A. Miran, I. H. Khaleel, K. A. Jasim, Assessing the optoelectronic performance of d-orbital doped cubic HfO₂: The case of W, Nb, and Mo, Optik, 264, 169341, (2022).
https://doi.org/10.1016/j.optik.2021.169341

[49] L. Yang, H. Qiu, L. Pan, Z. Guo, M. Xu, J. Yin, X. Zhao, Magnetic properties of BaTiO₃ and BaTi₁₋ₓMₓO₃ (M = Co, Fe) nanocrystals by hydrothermal method, J. Magn. Magn. Mater., 350, 1–5, (2014).
https://doi.org/10.1016/j.jmmm.2013.12.001

[50] Md. Atikur Rahman, Md Rahman, Zahidur Rahaman, First-principles calculations of structural, electronic and optical properties of HfZn₂, J. Adv. Phys., 5, 354–358, (2015).
https://doi.org/10.1166/jap.2015.1236

[51] D. Sanchez-Portal, E. Artacho, J. M. Soler, Projection of plane-wave calculations into atomic orbitals, Solid State Commun., 95(10), 685–690, (1995).
https://doi.org/10.1016/0038-1098(95)00469-3

[52] R. K. Roy, K. Hirao, S. Krishnamurty, S. Pal, Mulliken population analysis based evaluation of condensed Fukui function indices using fractional molecular charge, J. Chem. Phys., 115, 2901–2907, (2001).
https://doi.org/10.1063/1.1405028

[53] R. Carbó-Dorca, P. Bultinck, Quantum mechanical basis for Mulliken population analysis, J. Math. Chem., 36, 231–239, (2004).
https://doi.org/10.1023/A:1022236029995

[54] W. Jiang, Z. Gao, W. Sun, J. Gao, Y. Hu, A Density Functional Theory Study on the Effect of Lattice Impurities on the Electronic Structures and Reactivity of Fluorite, Minerals, 7(9), (2017).
https://doi.org/10.3390/min7090160

[55] Y. Wang, Q. Zhou, Q. Zhang, Y. Ren, K. Cui, C. Cheng, K. Wu, Effects of La-N Co-Doping of BaTiO₃ on Its Electron-Optical Properties for Photocatalysis: A DFT Study, Molecules, 29(10), (2024).
https://doi.org/10.3390/molecules29102250

[56] M. G. Brik, First-principles calculations of electronic, optical and elastic properties of ZnAl₂S₄ and ZnGa₂O₄, J. Phys. Chem. Solids, 71(10), 1435–1442, (2010).
https://doi.org/10.1016/j.jpcs.2010.07.007

[57] R. K. Goyal, S. S. Katkade, D. M. Mule, Dielectric, mechanical and thermal properties of polymer/BaTiO₃ composites for embedded capacitor, Compos. B Eng., 44(1), 128–132, (2013).
https://doi.org/10.1016/j.compositesb.2012.06.019

[58] Z. N. Jaf, H. A. Miran, M. M. Rahman, A. Amri, Z.-T. Jiang, DFT + U investigation on high-pressure properties of monoclinic CuO, Can. J. Phys., 102(5), 316–323, (2024).
https://doi.org/10.1139/cjp-2023-0241

[59] A. Iqbal, M. Batool, S. Azam, A. Rahman, First-principles quantum computational study to investigate radiation energy-dependent effect on optoelectronic properties of bismuth oxyhalides BiOX (X = I, Br), Radiat. Phys. Chem., 221, 111775, (2024).
https://doi.org/10.1016/j.radphyschem.2024.111775

[60] A. Nadeem, A. Iqbal, S. Azam, A. Rahman, M. Iqbal, Cd-doping-assisted tuning of transparency and conductivity of MnIn₂O₄ by density functional quantum theoretical approach, Eur. Phys. J. Plus, 328, (2023).
https://doi.org/10.1140/epjp/s13360-023-03911-8

[61] J. Chen, S. Hu, S. Zhu, T. Li, Metamaterials: From fundamental physics to intelligent design, Interdisciplinary Materials, 2, (2022).
https://doi.org/10.1002/idm2.12049

[62] Z. N. Jaf, Z.-T. Jiang, H. A. Miran, M. Altarawneh, M. K. Altarawneh, Thermo-elastic and optical properties of molybdenum nitride, Can. J. Phys., 94, 902–912, (2016).
https://doi.org/10.1139/cjp-2016-0125

[63] H. A. Miran, Z. N. Jaf, Electronic and optical properties of nickel-doped ceria: A computational modelling study, Papers in Physics, 14, 140002, (2022).
https://doi.org/10.4279/pip.140002

[64] A. Iqbal, S. Batool, A. Arif, A. Shazad, Dispersion-dependent superluminal propagation and photon drag in GaAs/AlGaAs quantum dot molecule, Phys. Scr., 98, (2023).
https://doi.org/10.1088/1402-4896/acff4f

[65] Xihong H., A review on the dielectric materials for high energy-storage application, J. Adv. Dielectr., 3(1), 1330001, (2013).
https://doi.org/10.1142/S2010135X13300016